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This review article is a first attempt to give a systematic and comprehensive
description (in the framework of the unified theoretical approach) of the exchange
interactions in polynuclear systems based on orbitally degenerate metal ions in
the context of their relevance to the modern molecular magnetism. Interest in
these systems is related to the fundamental problems of magnetism and at the
same time steered by a number of impressive potential applications of molecular
magnets, like high-density memory storage units, nanoscale qubits, spintronics
and photoswitchable devices. In the presence of orbital degeneracy, the
conventional spin Hamiltonian (Heisenberg–Dirac–van Vleck model) becomes
inapplicable even as an approximation. The central component of this review
article constitutes the concept of orbitally-dependent exchange interaction
between metal ions possessing unquenched orbital angular momenta. We present
a rigorous procedure of derivation of the kinetic exchange Hamiltonian for a pair
of orbitally degenerate transition metal ions that is expressed in terms of the
orbital matrices and spin operators. The microscopic background reveals the
interrelations between the parameters of the Hamiltonian and the internal
parameters of the system including all relevant transfer integrals and fundamental
intracenter interactions. The developed formalism integrated with the irreducible
tensor operator (ITO) technique makes it possible to describe the exchange
coupling and all relevant interactions (crystal fields, spin–orbit (SO) and Zeeman
couplings) in terms of the ITOs of the full spherical group, and in this way to
develop anunified and efficient computational tool. The orbitally-dependent
exchange was shown to lead to an anomalously strong magnetic anisotropy that
can be considered as a main physical manifestation of the unquenched orbital
angular momentum in metal clusters of orbitally-degenerate ions. The theoretical
background is illustrated by the following applications. The magnetic properties
of the binuclear face-shared unit [Ti2Cl9]

3� in Cs3Ti2Cl9 are discussed with the
emphasis on the observed magnetic anisotropy and on the non-trivial symmetry
properties of the exchange Hamiltonian. The major electronic factors controlling
the magnetic anisotropy in Co(II) pairs are discussed. The degree of the exchange
anisotropy was shown to depend on the strength of the cubic crystal field, on the
relative efficiency of the electron transfer pathways between unfilled d-shells and
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SO coupling. Provided strong SO coupling, the effective Hamiltonian was
projected onto the subspace of low-lying Kramers doublets and similarly
a pseudo-spin-1/2 Hamiltonian was derived. The described procedure allows
to establish the interrelation between idem parameters of the system and the
parameters of the pseudo-spin-1/2 Hamiltonian. Pseudo-spin-1/2 approach is
illustrated by the study of the inelastic neutron scattering spectra and magnetic
susceptibility of polyoxometalates encapsulating Co(II) clusters: Keggin deriva-
tive K8[Co2(D2O)(W11O39)] � nD2O, [Co4(H2O)2(PW9O34)2]

10� and [Co3W(D2O)2
(CoW9O34)2]

12� clusters. In the consideration of the cyanide-bridged Mn(III)–
CN–Mn(II) pair, it was demonstrated that under certain conditions the orbitally-
dependent exchange is able to produce a barrier for the reversal of magnetisation.
This seems to be instructive for the controlled design of cyano-based single
molecule magnets with high-blocking temperatures.

Keywords: molecular magnetism; metal clusters; exchange interactions; magnetic
anisotropy; single-molecule magnets; polyoxometalates; cyanides; orbital degen-
eracy; orbitally-dependent exchange; spin-orbit interaction
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Abbreviations

HDVV model Heisenberg-Dirac-Van Vleck model
SO spin-orbit

ZFS zero-field splitting
ITO irreducible tensor operator
INS inelastic neutron scattering
EPR electron paramagnetic resonance
TIP temperature independent paramagnetism
CT charge transfer

SMM single molecule magnet
SCM Single chain magnet

JT Jahn-Teller
JTE Jahn-Teller effect
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1. Introduction

Contemporary molecular magnetism originates from classical magnetochemistry and
represents a fascinating interdisciplinary field of science that incorporates basic concepts
of physics, chemistry and materials science. The evolution and the state-of-art in this field
is given in several papers and books [1–12] and summarised in the latest book ‘Molecular
Nanomagnets’ by Gatteschi et al. [1]. The main objects of molecular magnetism are either
magnetic molecules consisting of a finite number of exchange coupled spin sites (molecular
magnetic clusters and molecular magnets), or the extended materials based on magnetic
molecules exhibiting cooperative interactions (molecule-based magnets) [1–23]. A third
class of magnetic molecular systems are the so-called spin-crossover materials,
coordination compounds in which the spin state of the metal ion changes from low spin
to high spin upon the application of an external stimulus (temperature, light or pressure)
[2b]. Some of these magnetic systems exhibit interesting material properties and
applications. Thus, they behave as single molecule magnets (SMMs) and single chain
magnets (SCMs) [23–32], room temperature molecule-based ferromagnets [33–41],
multifunctional nanomaterials for molecular spintronics [42] or photoswitchable magnetic
materials [43–51]. As it was demonstrated, coexistence of ferromagnetism and metallic
conductivity can be reached in one molecular material [42,52]. Organic molecules
of increasing sizes and large numbers of unpaired electrons are also being explored
as building blocks for molecular-based magnets [53–59]. Molecular magnetic clusters
are not only ideal model systems for the study of exchange interactions between metal
ions, they are also of current interest in many areas of research, like material science,
biophysics, biochemistry (e.g. ferredoxins, photosystems II and the storage protein
ferritin [60–63]).

As far as the molecular magnets are concerned, one can assess that, presently, the
fundamentals of the field are established (at least the main concepts) [3b] and SMMs are
expected to provide impressive nano-technological applications as the memory storage
units of molecular size [1–3] and as carriers of quantum bits of information. In solid state
these molecules have been shown to behave as magnets of nanometer size, exhibiting
magnetic bistability and quantum tunnelling of magnetisation at low temperatures.
As SMMs can be placed on the border between the objects of quantum and classical
physics, they show, from one side, slow relaxation of magnetisation and magnetic
hysteresis as a bulk magnet, and, on the other side, they are still small enough to show
important quantum effects. The use of molecular magnets in quantum computing as
nanoscale qubits is one of the fascinating possibilities provided by these quantum objects
[64–71]. The observation of Rabi oscillations in molecular nanomagnets [71,73,82]
is expected to provide an impact on the development of this area of research and
applications [71–82].

The properties of molecular spin clusters, including those which are explored in the so
far mentioned applications, are strongly dependent on the magnetic exchange interactions
between constituent ions. In this respect, these systems can be quite conventionally divided
into two classes according to the orbital nature of the ground ligand field term of the
constituent metal ions. If the clusters are composed of the ions with half-filled orbitals
that give rise to orbitally non-degenerate ground states, the leading term in the exchange
interaction can be represented by the usually accepted Heisenberg–Dirac–van Vleck
(HDVV) Hamiltonian that is expressed in terms of spin operators only. For this reason
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the systems of such kind can be referred to as spin clusters. The key physical peculiarity

of the HDVV interaction is that it is magnetically isotropic. This property follows from

the fact that the HDVV Hamiltonian is invariant with respect to all kinds of rotations.
The anisotropy of spin clusters is relatively small in the sense that the parameters of the

anisotropic interactions are much smaller as compared to those involoved in the HDVV

coupling. The second type of the systems involves clusters comprising magnetic ions with
orbitally degenerate ground crystal field terms that, for the sake of brevity, will be termed

as degenerate clusters. As distinguished from the exchange interaction in spin clusters, the

magnetic coupling in degenerate clusters cannot be described in terms of spin operators

only and has much more complicated form that also includes orbital variables along with
spin operators. In general, the orbital degeneracy is directly related to an unquenched

orbital angular momentum in the electronic shell that will be shown to manifest itself in a

strong magnetic anisotropy. It is to be noted preliminarly that the anisotropic interactions

in systems composed of ions with unquenched orbital angular momenta are of the same
order of magnitude as the isotropic ones.

The theoretical background of molecular magnetism dealing with spin-clusters is higly

developed and has been described in detail in many reviews and books [1–7,14–20]. On the

contrary, the problem of orbital degeneracy has not received much attention in the field
of molecular magnetism in spite of its conceptual and practical importance. Although the

ability of the orbitally-dependent magnetic interactions to create strong magnetic

anisotropy was mentioned (in general terms) by van Vleck [83] many years ago, this
phenomenon has not been understood to the full extent till last decade, and consequently

has not been studied and reviewed. To the best of our knowledge, the present review article

is the first attempt to give a systematic and comprehensive description (in the framework

of the unified theoretical approach) of this kind of phenomenon in the context of its
relevance to the modern problems of molecular magnetism. This review is mainly devoted

to the conceptual aspects of the problem rather than to the detailed description of

particular applications, the last section is given in order to illustrate the approaches

and methodology. Along with the general ideas, we also wanted to provide the reader
with the computational tools and working formulae for the notable cases that would avoid

(at least in many cases) the necessity to read numerous original papers.
This review article is organised as follows. After this section, in Section 2 we give a brief

description of the very basic concepts used throughout this article. These include the
kinetic and potential mechanisms of the magnetic exchange and the definition of the

HDVV spin-Hamiltonian. Then the notions of the local (single-ion) and anisotropic

exchange interactions are introduced. Finally, the comparison of the anisotropy in spin-

clusters with that arising in degenerate clusters is made. Since a simultaneous
consideration of both local and pairwise interactions would mask their consequences,

it seems to be reasonable to treat them separately.
Section 3 contains a preliminary discussion of the exchange interaction in context

of orbital degeneracy. It is shown how the orbital angular momentum of a free ion is
quenched by the crystal fields of different symmetries and an important concept of T–P

isomorphism is introduced. Then a single-ion anisotropy in degenerate systems is

discussed. The key concept of the orbitally-dependent exchange is introduced through
a simple illustration that is aimed to give an explanation of the generalised Hamiltonian

adapted to the case of degeneracy.
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In Section 4, a simplified theory of degenerate systems that takes into account only the
single-ion anisotropy is presented. Within this framework, the effects of the orbital
angular momentum are included by taking into account spin–orbit (SO) coupling and low-
symmetry components of the crystal field. At the same time, the exchange interaction
between the metal ions is still assumed to be of the isotropic HDVV form that was adopted
in the so-called Lines model. Within this approach, we consider a phenomenological
pseudo-spin-1/2 Hamiltonian widely used for the description of the clusters containing
high-spin Co(II) ions. The pseudo-spin-1/2 approach is illustrated by the studies of
inelastic neutron scattering (INS) and magnetic susceptibility of polyoxometalates
encapsulating Co(II) clusters: Keggin derivative K8[Co2(D2O)(W11O39)] � nD2O,
[Co4(D2O)2(PW9O34)2]

10� and [Co3W(D2O)2(CoW9O34)2]
12� clusters. Finally, the micro-

scopic background of the pseudo-spin-1/2 Hamiltonian is derived.
In Section 5, we go beyond the assumption about the isotropic character of the

exchange and present a more comprehensive theory of the magnetic exchange in
degenerate clusters that take into account the orbitally-dependent terms in the
Hamiltonian. We derive a general form of the orbitally-dependent kinetic exchange
Hamiltonian and show how this Hamiltonian supplemented by a set of relevant
interactions (crystal field, SO coupling, etc.) can be treated with the use of the powerful
technique of the irreducible tensor operators (ITO).

Section 6 illustrates selected applications of the theory. The developed formalism is
applied to the study of the magnetic anisotropy of the corner shared and face-shared
bioctahedral 2T2ðt

1
2Þ �

2T2ðt
1
2Þ pairs with D4h and D3h overall symmetries. The last case

is exemplified by the [Ti2Cl9]
3� unit in Cs3Ti2Cl9 crystals whose magnetic behaviour is

discussed in detail. We also elucidate the major electronic factors controlling the
magnetic anisotropy in the Co(II) pairs and discuss the applicability of the conventional
isotropic Lines model. In the case of strong SO coupling, the effective Hamiltonian
is projected onto the subspace of low-lying Kramers doublets and similarly a pseudo-
spin-1/2 Hamiltonian is derived. The described procedure allows to establish the
interrelation between the physical parameters of the system and the parameters of
the pseudo-spin-1/2 Hamiltonian. Then the orbitally-dependent magnetic exchange in the
Mn(III)–CN–Mn(II) pair and its relevance to the SMM behaviour of cyanide bridged
systems are analysed.

Finally, in Section 7 we summarise the results also paying attention to the problems
remaining out of this scope of the review, in particular, the Jahn–Teller (JT) coupling and
unresolved questions. We conclude with some brief perspectives of the field, for instance,
hints for a meaningful serch of new SMMs.

2. Exchange interaction: basic definitions

2.1. Kinetic exchange

The basic concepts of the microscopic theory of magnetic exchange can be illustrated by
considering spin-clusters for which the ground terms of the constituent ions are orbitally
non-degenerate. It is conventional to distinguish two main mechanisms of the exchange
interaction according to the dominating interatomic interaction responsible for the
exchange, namely the kinetic and potential exchange. We start with the concept of the
kinetic exchange in the simplest case of exchange-coupled pair of transition metal ions
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A and B, when each ion possesses one unpaired electron in a non-degenerate orbital ’i
(i¼A,B) whereas the first excited orbital �i is unoccupied. Usually, the magnetic

exchange between the metal ions is mediated by the bridging diamagnetic atoms

(ligands) and for this reason such coupling was called superexchange. The theoretical

framework for treating the kinetic superexchange was developed by Anderson [84,85].

The basic idea was that the unpaired electrons are not fully localised on the metal ions

and some non-zero spin densities were found on bridging ligands due to covalency

effects. Then, the one-electron wave-functions describing these electrons (magnetic

orbitals) are mainly not only of 3d-character, but also include some admixture of the

bridging s- and p-orbitals.
Virtual electron transfer that mixes the ground state of the dimer with the excited

charge-transfer (CT) states occurs mainly due to the kinetic energy of electrons and gives

rise to the kinetic exchange that appears in Andreson’s theory [84,85] as a second-order

spin-dependent splitting. Figures 1 and 2 illustrate different kinetic exchange mechanisms

and their contributions to the overall exchange splitting. It is to be noted that the full spin

of the system is conserved in the course of the electron transfer. The ground manifold of

the pair includes the spin-singlet (S¼ 0) and spin-triplet (S¼ 1), the corresponding wave-

functions are the following:

�grðS ¼ 0Þ ¼
1ffiffiffi
2
p ’A �’B

�� ��� �’A’B
�� ��� �

, �grðS ¼ 1,MS ¼ 1Þ ¼ ’A’B
�� ��, ð2:1Þ

where ’i and �’i are the SOs with spin up and down, respectively, (’i � j’ðrÞ"i and
�’i � j’ðrÞ#i), and j’A’Bj, etc., are the Slater determinants. For the sake of simplicity,

the orbitals are assumed to be orthogonal. Only the spin-triplet wave-function with

maximum spin projection is given in Equation (2.1). If the metal ions are isolated from each

other, the spin-singlet and spin-triplet states possess the same energies. When the electron

transfer is switched on, the ground manifold is split due to the mixing (interaction of

configurations) with different CT states. The first kind of CT states (denoted as CT1 in

Figure 1) corresponds to the virtual electron transfer from the single-occupied ’A orbital of

ion A to the single-occupied ’B orbital of ion B and also from the back transfer ’B ! ’A
(the latter is not shown in Figure 1). In accordance with the Pauli’s exclusion principle, these

CT states are spin singlets and they are described by the wave-functions

�A
CT1
¼ ’A �’A
�� ��, �B

CT1
¼ ’B �’B
�� ��: ð2:2Þ

The states CT1 are separated from the ground manifold by a large (in comparison

to the interatomic interaction) gap U, where U is the energy of the Coulomb repulsion

between two electrons located at the same site. These CT states are connected with the

ground spin-singlet by the matrix elements

�B
CT1

���V̂ð’A ! ’BÞ
����grðS ¼ 0Þ

D E
¼ �A

CT1

���V̂ð’B ! ’AÞ
����grðS ¼ 0Þ

D E
¼

ffiffiffi
2
p

t’’, ð2:3Þ

where V̂ is the electron transfer operator and t’’ ¼ h’Bjĥj’Ai is the transfer integral

(ĥ is the one-electron Hamiltonian) for which the dominant contribution is provided

by the kinetic energy of the delocalised electron. Using the second-order perturbation
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treatment, one can find that the low-lying spin-singlet EðS ¼ 0Þ is stabilised with respect to

the spin-triplet EðS ¼ 1Þ due to the t’’-transfer processes by the value

EðS ¼ 1Þ � EðS ¼ 0Þ½ �’i!’j¼ 4
t2’’
U

, ð2:4Þ

Figure 2. Schematic representation for the mechanism of the antiferromagnetic kinetic exchange:
(a) orbital population in the ground and CT configurations and (b) full spin states and exchange
splitting (K is the intersite exchange integral and t’� is the ransfer parameter for the ’A ! �B
electron hopping).

Figure 1. Schematic representation for the mechanism of the antiferromagnetic kinetic exchange:
(a) orbital population in the ground and CT configurations and (b) full spin states and exchange
splitting (U is the intrasite interelectronic repulsion energy and t’’ is the ransfer parameter for the
’A ! ’B electron hopping).
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and hence the virtual electron transfer (second-order process) gives rise to the

antiferromagnetic exchange contribution.
Another type of CT state can occur if the centres contain more than one empty orbital

in the excited energy pattern. In this case, the CT states can also be obtained by the virtual
electron transfer from a half-occupied ’ orbital of one centre to an empty orbital � of

another centre (Figure 2). This kind of transfer leads to the CT states with S¼ 0 (CT2

state in Figure 2) and S¼ 1 (CT(S¼ 1) state in Figure 2). The gaps between the ground

manifold and CT states CT2 and CT(S¼ 1) are equal to UþK and U�K, respectively,
where

K ¼

Z Z
’ið1Þ�ið2Þgð1, 2Þ�ið1Þ’ið2Þd�1d�2 � ’i�i

� ��ĝ �i’i�� �
ð2:5Þ

is the intracentre exchange integral and ĝ is the interelectronic repulsion, i.e. two-electron

part of the Hamiltonian. It is seen that the spin-triplet state CT (S¼ 1) is lower in energy

than the spin-singlet state CT2 by the value 2K in accordance with the Hund’s rule.

The wave-functions for the states CT2 and CT (S¼ 1) are given by

�A
CT2
¼

1ffiffiffi
2
p ’A ��A

�� ��� �’A�A
�� ��� �

, �B
CT2
¼

1ffiffiffi
2
p ’B ��B

�� ��� �’B�B
�� ��� �

,

�A
CTðS ¼ 1,MS ¼ 1Þ ¼ ’A�A

�� ��, �B
CTðS ¼ 1,MS ¼ 1Þ ¼ ’B�B

�� ��, ð2:6Þ

where only the wave-functions with the maximum spin projection are shown for spin-

triplet CT states. The matrix elements connecting the spin-triplets prove to be the same as
those connecting spin-singlets, namely

�B
CT2

���V̂ð’A ! �BÞ
����grðS ¼ 0Þ

D E
¼ �A

CT2
jV̂ð’B! �AÞj�grðS ¼ 0Þ

D E
¼ �A

CTðS ¼ 1Þ
� ��V̂ð’B! �AÞ �grðS ¼ 1Þ

�� �
¼ � �B

CTðS ¼ 1Þ
� ��V̂ð’A ! �BÞ �grðS ¼ 0Þ

�� �
¼ t’�,

ð2:7Þ

where t’� ¼ �Bh jĥ ’A
�� �
¼ �Ah jĥ ’B

�� �
is the corresponding transfer integral. It is seen that

the t’�-transfer stabilises both the spin-singlet and the spin-doublet, but the stabilisation

of the spin-triplet is stronger due to the fact that it is closer in energy to the ground
manifold. Applying again the perturbation procedure, one can find that the t’�-transfer

stabilises the spin-triplet with respect to the spin-singlet by the value

EðS ¼ 0Þ � EðS ¼ 1Þ½ �’i!�j¼ 2t2’�
1

U� K
�

1

Uþ K

� 	
� 4t2’�K=U

2 ð2:8Þ

The interelectronic Coloumb repulsion of two electrons at the same centre usually exceeds

the intracenter exchange, and therefore in Equation (2.8) it is assumed that K=U� 1. One
can see that the stabilisation of the spin-triplet is smaller than the antiferromagnetic

splitting in Equation (2.4). In fact, the ferromagnetic splitting, Equation (2.8), represents

the third-order effect with respect to a small factor K=U.
In this context it is worth mentioning the so-called Goodenough–Kanamori rules [4,5],

which are closely related to the above consideration of the kinetic exchange pathways and
are widely used in molecular magnetism. According to these rules, the exchange coupling
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is antiferromagnetic if the virtual electron transfer occurs between overlapping half-filled

orbitals, and it is ferromagnetic if the electron virtually jumps from a half-filled to an

empty orbital or alternatively, from a filled orbital to a half-filled one.

2.2. Potential exchange

Potential exchange is induced by all intercentre Coulomb interactions,

ĝ0 ¼
e2

r12
�
Ze2

rB1
�
Ze2

rA2
þ
Z2e2

rAB
, ð2:9Þ

related to this part of the potential energy in the system of two ions, namely,

interelectronic repulsion energy (first term), Coulomb attraction of the electrons to the

alien centers (second and third terms) and the repulsion of the nuclei. The last three terms

do not contribute to the exchange in the model of localised orthogonal orbitals. The

meaning of the notations used in Equation (2.9) are explained in Figure 3.
The singlet-triplet gap is expressed through the integral of potential exchange as

following:

E S ¼ 0ð Þ � EðS ¼ 1Þ½ � P ¼ 2 ’A �B
� ��ĝ0 �B ’A�� �

: ð2:10Þ

The potential exchange is usually small and positive, and therefore leads to a

ferromagnetic contribution.

2.3. Heisenberg–Dirac–van Vleck model, restrictions

Taking into account both kinetic and potential contribution, one can write down the

overall singlet–triplet separation of an exchange-coupled pair with one unpaired electron

on each metal centre as follows:

EðS ¼ 0Þ � EðS ¼ 1Þ ¼ 2J: ð2:11Þ

In this expression, the value J:

J ¼ �2t2’’=Uþ 2t2’�K=U
2 þ ’A�B

� ��ĝ0 �B’A�� �
ð2:12Þ

Figure 3. Scheme of the interactions involved in the potential interatomic exchange.
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is the combined exchange parameter involving potential and kinetic exchange interactions.

One can see that the exchange splitting can be reproduced by the eigenvalues of an

isotropic spin Hamiltonian:

ĤexðA,BÞ ¼ �2J ŝAŝB, ð2:13Þ

in which the parameter J is expressed as the sum of antiferromagnetic and ferromagnetic

contributions and the cases J4 0 and J5 0 are related to the ferromagnetic and

antiferromagnetic coupling correspondingly, ŝA and ŝB are the spin operators of the ions A

and B. In the considered simple cases they are one-electron spin operators. It is important

to note that the Hamiltonian, Equation (2.13), has a more general sense and can be

extended to the case of many-electron ions. In this case, ŝA and ŝB are the full spin

operators of the many-electron metal centres. Such many-electron spin-Hamiltonian

represents the HDVV exchange model [1,14,15,86,87] that is widely used in molecular

magnetism and solid state physics.
In the view of the main topic of this article, it should be stressed that the derivation

of the HDVV Hamiltonian is essentially based on the assumptions that the active space

of each centre comprises only half-filled magnetic orbitals and double occupied

orbitals. This means that the ground terms of the centres are orbitally non-degenerate

and possess non-vanishing spins. Therefore, the HDVV model is only applicable to the

systems comprising ions whose ground terms are orbitally non-degenerate and well

isolated from the excited ones (spin-clusters). This is valid, for example, for the half-

filled shells of transition metal ions in a cubic crystal field, for example, high-spin

Fe(III) ions with the ground term 6A1ðt
3
2e

2Þ, Cr(III) ions with the half-filled t2 shell

giving rise to 4A2ðt
3
2Þ term, etc. In general, the gound term proves to be an orbital

singlet for all transition metal ions in a strong low-symmetry crystal field that removes

the orbital degeneracy and separates the ground state from the excited ones.

One should also note that, although the HDVV Hamiltonian is invalid in the

case of orbitally degenerate ions, the described basic mechanisms of the exchange

(kinetic and potential) are rather general and remain valid in the case of degeneracy

as well.
Turning back to the expression for the combined exchange parameter, Equation

(2.12), one can see that in most cases the antiferromagnetic contribution dominates.

Only when the electron transfer t’’ is prevented by the symmetry of the pair, the

overall interaction is expected to be ferromagnetic. This conclusion is, however, valid

only for non-degenerate states of the interacting metal ions. In degenerate systems, the

kinetic exchange is sometimes able to give rise to the ferromagnetic ground state as was

first pointed out by McConnell [88] and then discussed by Kollmar and Kahn [89],

Weihe and Güdel [90] and also in [91–94]. In the subsequent discussion, we will deal

with the situation when the orbitally-dependent exchange stabilises the ferromagnetic

state. From this point of view, the use of exchange-coupled metal ions with the

unquenched orbital angular momenta can be regarded as a possible strategy for the

design of molecular ferromagnets. Another important trend is to obtain orbitally-

degenerate clusters exhibiting unusually strong magnetic anisotropy useful for

applications.
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2.4. Magnetic anisotropy in spin-clusters

2.4.1. Single-ion anisotropy

Considering magnetic anisotropy, one can distinguish two kinds of anisotropic

contributions, namely, single-ion contributions and those appearing due to the anisotropy

of the exchange interactions. Both named factors act in spin clusters as well as in

degenerate systems, but their manifestations in these two kinds of systems, are different as

well as in the corresponding parameters.
In the ground orbital singlet states of the metal ions the first-order orbital angular

momentum is quenched. As a result, the spin contribution to the single-ion magnetic

moments (and hence to the total magnetic moment of the cluster) dominates. Single-ion

anisotropic terms appear in spin-clusters in which the symmetry of the local

surroundings of the constituent metal ions is lower than the cubic one as due to the

small mixing of the ground spin state of ions with the excited crystal field terms through

the SO coupling. This mixing leads to the anisotropic corrections to g-factors and also to

the zero-field splitting (ZFS) terms in the spin-Hamiltonian (see [4,15,95,96] and

references therein). The ZFS of the state of cluster with the spin S is described by the

Hamiltonian

ĤZFS ¼ DS Ŝ2
Z �

1

3
SðSþ 1Þ


 �
þ ES Ŝ2

X � Ŝ2
Y

� 

, ð2:14Þ

where the parameters DS and ES are the so-called axial and rhombic ZFS parameters.

The Hamiltonian, Equation (2.17), is not invariant under arbitrary rotations and therefore

brings the magnetic anisotropy into the system. Since the ZFS appears as a second-order

correction, the parameters of ZFS can be estimated as / �2=DE, where � is the SO

coupling constant and DE is a gap in the crystal field energy pattern. Usually, for the

transition metal ions j�=DE j � 1 that determines the smallness of the local contributions

to the global anisotropy.

2.4.2. Exchange anisotropy

The HDVV Hamiltonian is expressed in terms of the scalar products of spin operators,

and therefore it is invariant under any rotations. This means that the Zeeman splitting

arising from the interaction of spins with the external magnetic field is independent of the

direction of the field. Therefore the exchange coupling in the framework of the HDVV

model does not imply magnetic anisotropy. If weak magnetic anisotropy still exists in spin-

systems, it appears as a result of small corrections to the HDVV spin Hamiltonian due to

the contributions of the excited states admixed by SO coupling to the ground state.
Along with the HDVV terms the exchange Hamiltonian contains anisotropic

contributions [4–6,14,15], which can be written in the tensorial form as
P

ij ŝiTijŝj, where

the second-order tensor Tij can be divided into the symmetric part Gij and antisymmetric

one Dij. The corresponding terms are not invariant under the rotations and their explicit

form does depend on the point symmetry of the system giving rise to a magnetic

anisotropy. Among anisotropic contributions, one should mention the antisymmetric

exchange introduced by Dzyaloshinsky [97] using phenomenological symmetry arguments
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and deduced explicitly by Moriya [98,99] using the inclusion of SO coupling in the

Anderson’s theory of superexchange:

HAS ¼
X
i,k

Dij½ŝi � ŝk�, ð2:15Þ

where Dij ¼ �Dji are the antisymmetric vector parameters. Antisymmetric exchange

appears as a second-order perturbation through the combined effect of SO interaction
and isotropic exchange coupling. Therefore, the Dij parameters can be estimated as

Dij / Jijð�=DE Þ, where � is the SO coupling parameter and DE is the energy of an

appropriate excited state (crystal field splitting). The parameters Gij in the symmetric part

of the anisotropic exchange are of the order of Gij / Jijð�=DE Þ
2. Usually for the transition

metal ions crystal field exeeds SO coupling, j�=DE j � 1, and hence the magnetically

anisotropic interactions are small as compared to the isotropic ones.
Although the local and exchange anisotropic contributions cannot be directly

compared, it should be emphasized that in spin-clusters the parameters defining all the
above mentioned single-ion and pairwise anisotropic contributions are usually small

compared to the isotropic ones, so only relatively weak magnetic anisotropy can be

expected for these clusters.

3. Orbital degeneracy and exchange interaction: a preliminary consideration

3.1. Orbital angular momentum in crystal fields, T–P isomorphism

An effective quenching of the orbital angular momentum of the metal ion in crystal fields

of different symmetries has been understood at the earlier stage of crystal field theory [83]

and played a fundamental role in the development of coordination chemistry and solid

state physics, in general, and specifically, in the understanding of magnetism. To illustrate

the main ideas, let us consider one-electron 3d-state of a free ion for which l and s are
the exact quantum numbers. This state possesses the orbital angular momentum l ¼ 2 and

spin s ¼ 1=2. In the crystal fields of the cubic symmetry, five 3d states are split into the

orbital triplet 2t2g (dyz, dxz, dxy) and the orbital doublet 2egðdz2 , dx2�y2 Þ, with the 2t2g-state

being the ground one in the octahedral surrounding (Figure 4). The 3� 3 matrices of the

orbital angular momentum operators defined on the basis of the orbital triplet are given

by (see, e.g. the books [100,101])

dyz dxz dxy

l̂xðt2gÞ ¼

0 0 0

0 0 i

0 �i 0

0
B@

1
CA, l̂yðt2gÞ ¼

0 0 �i

0 0 0

i 0 0

0
B@

1
CA, l̂zðt2gÞ ¼

0 i 0

�i 0 0

0 0 0

0
B@

1
CA: ð3:1Þ

These matrices obey the same commutation relations as the components of the orbital

angular momentum l̂x, l̂y, l̂z. Although the operators l̂ 2 and l̂z do not commute with the

cubic crystal field potential that lowers the spherical symmetry of a free ion, the system in

a restricted basis of three t2g orbitals can be described by an effective angular orbital
momentum l ¼ 1. This means that the cubic crystal field partially reduces the orbital

angular momentum of a free ion from l ¼ 2 to l ¼ 1. By comparing these matrices with
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those for the p-state (basis px, py, pz) of a free atom, one can see that the following simple

relation holds:

l̂ðt2gÞ ¼ �l̂ð pÞ: ð3:2Þ

This relation is a particular case of a more general statement that is called T–P

isomorphism. On the other hand, all matrix elements of the orbital angular momentum

operators in the 2eg-state are vanishing, so the first-order orbital angular momentum is

completely quenched in the cubic 2eg-state and only the second-order term arising from the

SO mixing of the 2t2g and 2eg-states remains.
A crystal field of a lower symmetry produces further quenching of the orbital angular

momentum. This is illustrated by the right-hand side of Figure 4. Thus, when the

symmetry of the crystal field is reduced from Oh to D4h, the
2t2g-level undergoes the

splitting into the tetragonal orbital doublet 2egðdyz, dxzÞ and the singlet 2b2gðdxyÞ.

Depending on the sign of the tetragonal crystal field splitting, either orbital singlet or

doublet can be the ground state (Figure 4 displays the situation when the orbital doublet is

the ground state). When the 2eg-state is well separated from the 2b2g-state, one can neglect

the matrix elements of the orbital angular momentum operators connecting these two

states and consider the orbital angular momentum matrices defined on the basis of

tetragonal 2eg-state. It is seen that all matrix elements of the operators l̂x and l̂y are

vanishing within the 2eg-state, and the matrix of l̂z is the following:

d�1 dþ1

l̂zðegÞ ¼
�1 0

0 1

� 	
,

ð3:3Þ

where the following complex (circular) basis for d-orbitals is used:

d�1 ¼ �ðdxz � idyzÞ=
ffiffiffi
2
p

,

dþ1 ¼ þðdxz þ idyzÞ=
ffiffiffi
2
p
:

The matrix in Equation (3.3) in the complex basis d�1 and dþ1 coincides with the matrix

of l̂z in the basis of p-functions p�1 ¼ �ð px � ipyÞ=
ffiffiffi
2
p

and pþ1 ¼ þð px þ ipyÞ=
ffiffiffi
2
p

, so that

Figure 4. Illustration for the partial quenching of the first-order orbital angular momentum by the
cubic and tetragonal crystal fields.
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the tetragonal 2eg-state can be regarded as a state with projections ml ¼ 	1 of the orbital
angular momentum, whereas the 2b2g-state possesses ml ¼ 0. It should be emphasized that
in the tetragonal 2eg-state the first-order orbital momentum is still not fully quenched.
This conclusion is also valid for the axial point groups and, in particular for the, trigonal
2e-state arising from the cubic 2t2g-level. In a field of a lower symmetry, the 2eg-state will be
evidently split into orbital singlets so that the first-order orbital angular momentum will
be fully quenched.

The concept of pseudoangular momentum is rather general and, in particular, is not
only restricted to the one-electron case but also valid for the many-electron terms of the
transition metal ions. In the present review, we will deal with the cubic orbital triplets
2sþ1T2g or 2sþ1T1g (states with l ¼ 1 and ml ¼ 0, 	 1) and also with the tetragonal orbital
doublets 2sþ1Eg (or trigonal orbital doublets arising from the cubic orbital triplets)
possessing ml ¼ 	1.

3.2. Single-ion anisotropy in degenerate systems

As distinguished from spin-systems, the anisotropy in degenerate systems is expected to be
strong. Here again the two kinds of the anisotropic contributions can be distinguished,
namely the single-ion contributions and the exchange ones.

The origin of a strong single-ion anisotropy in degenerate systems can be illustrated by
a scheme of classical motion of the angular momentum in the situation when a cubic
orbital triplet is split by an axial crystal field into a singlet and a doublet (Figure 5).
While the orbital triplet can be regarded as a state with the orbital angular momentum
l ¼ 1, the singlet and doublet can be associated with the projections ml ¼ 0 and ml ¼ 	1,
respectively. Depending on the sign of the axial field, the ground state can be either
doublet or singlet. In the former case, the ground state can be regarded as the state in
which only two possible values of the angular momentum projection (‘up’ and ‘down’) are

Figure 5. Illustration for the magnetic anisotropy induced by an axial crystal field.
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retained. This immediately leads to a strong uniaxial magnetic anisotropy with Z being
the ‘easy’ axis of magnetisation. In fact, the system shows a linear Zeeman splitting in
a parallel (along the axis) field and does not exhibit splitting in a perpendicular field
(Figure 6). Figure 5 also illustrates the existence of the barrier for the reversal of
magnetisation when the doublet (‘negate’ ZFS) is the ground state. In fact, the system
can jump from ‘up’ (‘down’) to ‘down’ (‘up’) configuration through the exited singlet.
On the contrary, provided ‘positive’ ZFS, the system proves to be barrierless.

As distinguished from the spin, the orbital angular momentum ‘feels’ the axial crystal
field directly, and hence the magnetic anisotropy appears without the inclusion of SO
coupling. In this case, the singlet–doublet gap is just the axial crystal field splitting. On the
contrary, when the ground state of the ion possesses only spin (spin clusters), this state can
be affected by the axial field only through the second-order SO coupling and thus leading
to the above-mentioned anisotropy of g-factors and ZFS. Formally, the ZFS for s¼ 1 and
the axial field splitting for the orbital triplet (l¼ 1) are similar in the labels of the levels
(ms ¼ 0 and ms ¼ 	1 for spin states and ml ¼ 0 and ml ¼ 	1 for orbital states), but
in the former case the ZFS is of the order of 0.1–10 cm�1 whereas the axial crystal field
splitting for the orbital triplet is about 103 cm�1. Just these energies determine the
magnitude of the external magnetic field that is able to turn the magnetic moment, and
therefore this field can be referred to as a characteristic measure of the magnetic
anisotropy or, alternatively, of the barrier for the reversal of magnetisation. In this sense,
the direct (first-order) orbital contributions can be referred to as strong, whereas the
anisotropy in spin-systems is ‘weak’. This is illustrated by Figure 7, which demonstrates
the field dependences of magnetic moments of an axial spin ion (s¼ 1, l¼ 0, Ds¼�3 cm

�1,
gs¼ 2) and an orbitally degenerate ion (s¼ 0, l¼ 1, D¼�100 cm�1, gl¼ 1) for the two
main directions of the magnetic field. In the case of spin systems, the saturation is reached
in the fields that are much lower than those for the degenerate systems. At the same time,
the difference between the values of magnetisation in principal directions of the field are
much smaller in spin-systems. One can see that, in general, the degenerate systems exhibit a
much more pronounced anisotropy than the spin-systems.

3.3. The concept of the orbitally-dependent exchange: a simple illustration

Exchange interaction and, in particular, magnetic anisotropy in degenerate systems
represents a more complicated phenomenon. In this section we will introduce a key

Figure 6. Zeeman splitting of the level with s ¼ 0, ml ¼ 	1, � is the orbital reduction factor that is
related to a partial delocalisation of the d-orbitals towards the ligands [5].
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concept related to the exchange interaction in the degenerate systems, namely the concept

of the orbitally-dependent exchange. We will show how the orbitally-dependent exchange

Hamiltonian naturally appears while considering the interaction between ions with the

unquenched orbital angular momenta. This also allows to comprehend the general features

of the magnetic anisotropy. The concept of orbitally-dependent exchange can be illustrated

by considering potential exchange in a simple case of s–p molecule (van Vleck [102] and

Levi [103]). In this dimer one atom (A) has an s electron and another one (B) possesses a p

electron. There are three possible orbital states of the molecule, which can be referred to as

spZ, spX and spY. Accordingly, one can describe the exchange interaction in the bielectron

molecule by means of the following three Hamiltonians:

Ĥ� ¼ �J�
1

2
þ 2ŝAŝB

� 	
, � ¼ spZ, spX, spY: ð3:4Þ

In conformity with the symmetry of the molecule (Figure 8) there are only two

independent exchange integrals, which can be associated with the �- and two equivalent

�-bonds:

JspZ ¼

Z Z
s
Að1Þ p



ZBð2Þð1=r12ÞsAð2Þ pZBð1Þd�1d�2 � J� � Jjj,

JspX ¼ JspY � J� � J?:

ð3:5Þ

Now instead of three equations (3.4) (�¼ spZ, spX, spY), one can describe the exchange

interaction by the following matrix Hamiltonian operating within the full basis comprising

four spin states and three orbital states:

Ĥex ¼

Jjj
1
2þ 2ŝA ŝB
� �

0 0
0 J?

1
2þ 2ŝA ŝB
� �

0
0 0 J?

1
2þ 2ŝA ŝB
� �

0
@

1
A � �F̂ 1

2
þ 2ŝA ŝB

� 	
: ð3:6Þ

Figure 7. Field dependences (H in Tesla) of magnetisation for an axial spin system, s¼ 1, and for
orbitally degenerate system, l¼ 1 (temperature T¼ 2K).
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Here F̂ is the orbital operator defined by the diagonal 3� 3 matrix on the basis of three

biorbital states jspZi, jspXi and jspYi.

spZ spX spY

F̂ ¼

Jjj 0 0

0 J? 0

0 0 J?

0
B@

1
CA: ð3:7Þ

Each block of the matrix in Equation (3.6) represents a sub-matrix acting in the spin basis

of the two centres provided that the orbital state is fixed (s px, s py, s pz), and hence the

full Hamiltonian is represented by the 12�12 matrix in the basis js pi, sA ¼ 1=2, msA,

sB ¼ 1=2,msBi (i ¼ X,Y,Z, msB ¼ 	1=2,msA ¼ 	1=2).
We thus arrive at the Hamiltonian that contains both spin and orbital operators,

and for this reason this Hamiltonian can be referred to as orbitally-dependent exchange

Hamiltonian. To make this statement more transparent, it is instructive to pass from

the real orbitals pZ, pX and pY to the basis l ¼ 1,mlj i ordered as 1, 0j i, 1, 1j i, 1, � 1j i

in which the marix F̂ retains its diagonal form, Equation (3.7). This allows one to express

the operator F̂ in terms of the angular momentum operator as follows:

F̂ ¼ ð1=3Þ Jjj þ 2J?
� �

� ð1=3Þ Jjj � J?
� �

3l̂ 2Z � 2
� 


: ð3:8Þ

Alternatively, the Hamiltonian, Equation (3.6), can be rewritten as

Ĥ ¼
1

6
ðJjj � J?ÞÔB �

2

3
ðJjj þ 2J?ÞŝAŝB þ

2

3
Jjj � J?
� �

ÔB ŝAŝB, ð3:9Þ

where the constant term is omitted and the orbital operator ÔB ¼ ð3l̂
2
z � 2Þ acts in the p-basis

of the degenerate centre B. The operator part of the Hamiltonian contains three types of

contributions: orbital part (first term) that contains only the orbital operator ÔB, spin part

(second term) that does not contain the orbital operator and is of HDVV form and mixed

spin–orbital part (third term) that contains the scalar product of spin operators and operator

ÔB. Such kind of complicated structure of the Hamiltonian is the main feature of degenerate

Figure 8. s–p molecule: illustration for the two types of the exchange integrals.
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systems that drastically distinguishes them from spin-clusters. A general form of the
orbitally-dependent Hamiltonian will be considered in Section 5. Figure 9 shows the energy
pattern of s–p-exchange pair in the conventional notations for the terms of a diatomic
molecule providing ferromagnetic exchange interactions. One can see that the enegy levels
are much more complicated as compared to those in a simple spin model.

3.4. Exchange anisotropy in degenerate systems

Let us discuss the magnetic anisotropy of the above-considered diatomic molecule.
The HDVV contribution in Equation (3.9) is magnetically isotropic, whereas the two
remaining orbitally-dependent terms are obviously anisotropic and have axial symmetry.
In particular, the system in 1� term exhibits a fully anisotropic magnetic moment as
shown in Figure 9, and for 3� term one can observe an isotropic spin contribution and
a fully anisitropic orbital one. One can see that three parameters of the Hamiltonian,
Equation (3.9), are expressed in terms of the two fundamental exchange constants Jjj and
J? and therefore they are of the same order of magnitude. In this way, one arrives at the
remarkable conclusion that in systems comprising ions with unquenched orbital angular
momenta the isotropic and anisotropic contributions to the overall exchange are of the
same order of magnitude, and in this sense the magnetic anisotropy can be referred to
as strong one. This conclusion marks a fundamental difference between spin-systems
in which the anisotropy is small and orbitally degenerate systems possess strong magnetic
anisotropy.

Figure 9 shows that, in the example under consideration, the ground state is
magnetically isotropic and strong magnetic anisotropy appears when the next two excited
levels are populated. The majority of the studies dealing with the problem of the
unquenched orbital angular momenta in exchange-coupled molecular systems relates to
the clusters containing high-spin Co(II) ions in octahedral or quasioctahedral surround-
ings. There are two main approaches to treat this kind of systems, namely the microscopic
approach proposed by Lines and Ginsberg [104,105] and the phenomenological approach
based on the effective pseudo-spin-1/2 Hamiltonian [101,106–112], which describes the
interaction between two Co(II) ions in their ground Kramers doublet states. The Lines
model takes into account SO coupling acting within the ground cubic 4T1 term of each
Co(II) ion and the exchange coupling between the Co(II) ions. According to the Lines’

Figure 9. Energy pattern of s–p-exchange pair, exchange interactions are assumed to be
ferromagnetic (conventional notations for the terms of a diatomic molecule are used).
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assumption, this exchange interaction is described by the isotropic HDVV spin

Hamiltonian. If the symmetry of the local surroundings of Co(II) ions is lower than the

cubic one, a strong (first-order) single-ion anisotropy can be expected. Such anisotropy
appears as a result of the splitting of the ground cubic 4T1 term by the low-symmetry (non-

cubic) components of the crystal field. In the Lines model this anisotropy was not taken

into account, so only high-symmetric systems comprising Co(II) ions in a perfect
octahedral ligand field can be treated within this model. As an example, one can mention

ref [113]. reporting the susceptibility of the triangular m3-oxo-bridged heterometallic

complex [Fe2CoO(CH3COO)6(3-Cl–Py)3] in powder form. The model Hamiltonian is

elaborated involving isotropic exchange interactions Fe(III)–Fe(III) and Co(II)–Fe(III)
dealing with the real spins of high-spin Co(II) and Fe(III) ions, and also SO coupling and

low-symmetry crystal field (C2v) acting within the 4T1g ground manifold of the Co(II) ion.

The outlined general model takes into account the strong anisotropic orbital contribution

to the magnetic characteristics of the whole system arising from the Co(II) ion with
unquenched orbital angular momentum.

On the contrary, the approach based on the pseudo-spin-1/2 Hamiltonian takes into

account the anisotropy of the effective exchange parameters and g-factors. Since the

exchange interaction is assumed to be isotropic, the anisotropy of the effective pseudo-
spin-1/2 Hamiltonian is apparently a consequence of the above-mentioned single-ion

anisotropy. An important problem that remained unsolved untill recently relates to the

elucidation of the microscopic origin of the pseudo-spin-1/2 Hamiltonian, namely, to the
establishing of interrelation between the set of the parameters involved in the effective

Hamiltonian (which remained unknown in the framework of the phenomenological

approach) and the set of microscopic parameters (exchange integral, SO parameter and

low-symmetry crystal field parameter). This problem has been discussed in [114], in which
the anisotropic pseudo-spin-1/2 Hamiltonian is deduced on the basis of the microscopic

Lines model generalised to the case of axially and rombically distorted octahedral

surroundings of Co(II) ions (we will refer to this model as anisotropic Lines model).
An extension of the anisotropic Lines model to other transition metal ions

with unquenched orbital angular momenta has been elaborated in [115,116],

in which the magnetic properties of a trigonal bipyramidal cyano-bridged SMM

[MnIII(CN)6]2[MnII(tmphen)2]3 containing orbitally degenerate low-spin Mn(III) ions

has been interpreted and possible ways of increasing the barrier for the reversal of
magnetisation have been discussed. Some aspects of the above-mentioned problems will be

discussed hereafter.
The exchange anisotropy in clusters comprising ions with unquenched orbital angular

momenta can be described in the framework of a more general theory that takes into
account the orbitally-dependent terms of the effective exchange Hamiltonian. Many efforts

were applied to construct the exchange Hamiltonian for a pair of orbitally degenerate ions

[103,117–130]. First ideas in this area were proposed by van Vleck in his pioneering paper

[102]. The theory of the potential exchange between orbitally-degenerate ions was worked
out by Levy [117,118], and later on the cubic crystal field has been taken into account

[119,120]. In this earlier period it was understood that the exchange interaction in orbitally

degenerate systems is orbitally-dependent, and can lead to a strong magnetic anisotropy.
Subsequent studies in this area were mainly focused on the consideration of the kinetic

exchange mechanism proposed by Anderson [84,85]. Conventionally, this kind of magnetic
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exchange dominates in most cases. For the first time, Kugel and Khomskii [121,122]

considered the kinetic exchange between the orbitally degenerate ions and developed the

theory of orbital ordering in JT crystals on this basis. Orbitally-dependent intercentre

coupling also appears due to the JT effect (JTE) and results in a structural ordering

in crystals (see the book by Kaplan and Vekhter [123]). Later on, the underlying ideas

proposed in the cited works have been applied to the field of the molecular magnetism with

their subsequent developing towards a more detailed description of the crystal field states

and virtual electron transfer processes in the exchange coupled metal ions. In this context,

the articles of Drillon and Georges [124,125], Leuenberger and Güdel [126], Weihe

and Güdel [90] and Ceulemens et al. [127–129] devoted to the orbitally-dependent kinetic

exchange should be mentioned. Although the important features of the exchange in

degenerate systems had been understood, several underlying problems proved to be

unresolved:

(i) The kinetic exchange Hamiltonian was only built for a pair of ions with simple

electronic configurations (mainly the cases of one or two t2 electrons per site).

At the same time, a general form of the orbitally-dependent kinetic exchange

Hamiltonian has not been deduced.
(ii) The deduced Hamiltonians were valid only for cubic local surroundings of

constituent metal ions and specific overall symmetries of a pair.
(iii) A complex multiplet structure of the energy spectrum of the CT states implied

by the Tanabe–Sugano diagrams was ignored.
(iv) Last but not the least, the physical consequences of the orbitally-dependent

exchange interactions for the field of molecular magnetism (especially, anomalous

magnetic anisotropy) have not been understood to full extent.

A more detailed discussion of these limitations of the conventional approaches will be

given in the subsequent sections. Here we will only note that the absence of a general

theoretical approach to the problem of orbitally-dependent exchange, precluded from the

adequate description of this interaction, in complex systems containing many-electron

orbitally degenerate ions and the exchange, coupled pairs of arbitrary overall symmetries.

In his book ‘Molecular Magnetism’ [5], Oliver Kahn indicated that in spite of the existence

of a large number of studies devoted to this topic ‘. . . the interaction between ions with

unquenched angular momenta remains essentially an unsolved problem in the sense

that there is no widely accepted model. Each case has been treated in a specific manner

with a specific model . . .’.
In order to overcome the limitations of the conventional approaches, a new method

has been recently developed to attack the problem of the kinetic exchange between

orbitally degenerate ions [91–94]. As distinguished from the previous works, the orbitally-

dependent exchange Hamiltonian has been deduced in a general form, that is, for the

arbitrary terms and electronic configurations of the constituent metal ions in crystal

fields. The usage of the tensorial properties of the creation and annihilation operators and

Wigner–Racah algebra allowed to express the effective exchange Hamiltonian in terms

of the irreducible tensors of the point groups of the local surroundings of metal ions, spin

operators, the parameters of the constituent moieties (crystal field splitting parameter and

Racah parameters) and the set of the intercentre transfer integrals specific for each overall

symmetry of the pair. This Hamiltonian proved to be an efficient tool for the description
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of the magnetic properties of clusters comprising metal ions with unquenched orbital
angular momenta and, especially, their magnetic anisotropy. The developed approach has
been applied to the interpretation of the magnetic behaviour of [Ti2Cl9]

3� dimer [130–132],
to the study of the exchange anisotropy in Co(II)-dimers [133,134] and cyanide-based
SMMs [135,136].

4. Orbital effects and local magnetic anisotropy in the isotropic exchange model

4.1. Lines approach to the problem of the magnetic exchange in Co(II) clusters

The majority of the works, in which the role of the unquenched orbital angular momentum
in molecular magnetism was discussed, were devoted to the compounds containing
octahedrally coordinated high-spin Co(II) ions. The most widely used model to treat the
magnetic behaviour of Co(II) clusters was proposed by Lines [104] and Ginsberg [105]
(see the overview in [137].

The two lowest terms of a free Co(II) ion arising from the 3d7 configuration are 4F
(ground) and 4P. The cubic crystal field splits the 4F term into 4T1,

4T2 and 4A2 terms in
such a way that the orbital triplet 4T1 becomes a ground state, while the excited 4P state
results in the 4T1. In addition, two 4T1 terms are mixed by the cubic crystal field so that
the ground state is mainly of 4F character, but also contains an admixture of 4P. Using the
T�P isomorphism [82] (Section 2.2.), one can regard the orbital triplet 4T1 as a state
possessing fictitious orbital angular momentum l ¼ 1. The matrix of the angular
momentum operator l̂ within the 4T1ð

4F Þ manifold proves to be the same as the matrix
of � 3=2ð Þ l̂ defined in the atomic p-basis. This orbital angular momentum is coupled with
the spin s ¼ 3=2 by the SO interaction

ĤSO ¼ �ð3=2Þ� � l̂ ŝ, ð4:1Þ

where � � �180 cm�1 [5] is the SO coupling parameter for a free Co(II) ion, and � is the
orbital reduction factor. The pseudoangular momentum representation can be used in
order to label the fine structure levels in a cubic crystal field. Accordingly, the SO coupling
splits the ground 4T1 term into the following states characterised by the total angular
momentum j: doublet j ¼ 1=2 �6ð Þ, quartet j ¼ 3=2 �8ð Þ and sextet j ¼ 5=2 �7 þ �8ð Þ with
the energies 15=4ð Þ ��, 3=2ð Þ �� and � 9=4ð Þ ��, respectively (Figure 10). Alternatively, the
Bethe’s notations for the double-valued irreducible representation of the point group O are
used: �6 is a Kramers doublet with the basis j j ¼ 1=2,mj ¼ 	1=2i, �8 is the quadruplet
with the basis j j ¼ 3=2,mj ¼ 	1=2i, j j ¼ 3=2,mj ¼ 	3=2i and, finally, �7 is the second
Kramers doublet in O. The basis functions of the low-lying Kramers doublet j ¼ 1=2 �6ð Þ

can be found making use of the Clebsch–Gordan decomposition

�ð j,mj Þ ¼
X
ml ms

C
j mj

1 ml3=2ms
l ¼ 1, ml, s ¼ 3=2, ms

�� �
, ð4:2Þ

where C
j mj

1 ml3=2 ms
are the Clebsch–Gordan coefficients in the conventional notations [100].

Using Equation (4.2), one finds the following eigen-vectors:

�ð1=2, 	 1=2Þ ¼ ð1=
ffiffiffi
6
p
Þ j1, 	 1, 3=2, � 1=2i � ð1=

ffiffiffi
3
p
Þ j1, 0, 3=2, 	 1=2i

þ ð1=
ffiffiffi
2
p
Þ j1, � 1, 3=2, 	 3=2i: ð4:3Þ
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The wave-functions for the quartet and sextet are given, for example, in [104,105].
As one could see, a simple HDVV Hamiltonian is, in general, inapplicable for the

degenerate systems. Nevertheless, Lines has assumed that the isotropic HDVV

Hamiltonian can be approximately applied to treat the magnetic properties of polynuclear

Co(II) clusters. The applicability of this approximation will be discussed in Section 6.

The Hamiltonian for a dimeric unit AB including isotropic exchange and Zeeman

interaction is given as follows:

V̂ ¼ �2JŝAŝB � 	 HZ

X
i

ge ŝ
i
Z � 3=2ð Þ � l̂iZ

h i
: ð4:4Þ

Since the interactions involved in this Hamiltonian are magnetically isotropic, the

Hamiltonian holds the same form providing any choice of Z-direction. Each single-ion

spin and orbital operator in Equation (4.4) acts within the space comprising 12 wave-

functions �ð j,mjÞ, so the Hamiltonian operates in the basis of 12N states (direct product

of the one-site states), where N is the number of the constituent Co(II) ions.
The SO coupling stabilises the Kramers doublet that is separated from the first excited

quartet state (the gap is of the order of 300–400 cm�1). This splitting significantly exceeds

Zeeman splitting and, in many cases, it also exceeds the splitting caused by the magnetic

exchange. For these cases, this makes it possible to consider that the low-lying energy

levels of two exchange coupled Co(II) ions are a result of the interaction between two

Kramers doublets, as shown in Figure 10, and describe this interaction by a pseudo-spin-

1=2-Hamiltonian. The full Hamiltonian Ĥ can be represented as a sum of the zero-order

term Ĥ0 ¼ ĤSO and the term V̂ (Equation (4.4)) playing a role of perturbation. For the

further calculation, the matrices of spin and orbital angular momentum operators

ŝX i, ŝY i, ŝZ i, l̂X i, l̂Y i, l̂Z i are to be evaluated in the basis �i 1=2, 1=2ð Þ, �i 1=2, � 1=2ð Þ. One

can find the following interrelations between the operators ŝ i, l̂ i defined in the Kramers-

doublet basis and the spin-1=2 operators ŝi:

ŝi ¼ ð5=3Þŝi, l̂i ¼ �ð2=3Þŝi, ð4:5Þ

Figure 10. Illustration for the origin of effective pseudo-spin-1/2 Hamiltonian.
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where �̂� ð� ¼ X,Y,ZÞ are related to the Pauli matrices �̂�, as usually �̂� ¼ 1=2ð Þ �̂�. This
allows us to define the first-order effective pseudo-spin-1/2 Hamiltonian operating within
the restricted basis of the direct product of Kramers doublets states

Ĥ
ð1Þ
eff ¼ �ð50=9ÞJ

X
i5k

ŝiŝk þ g0	HZ

X
i

ŝiZ ð4:6Þ

In Equation (3.6), the value

g0 ¼ ð1=3Þð5ge þ 3�Þ ð4:7Þ

represents the effective g factor for a Kramers doublet.
Lines has mentioned that the Hamiltonian Ĥ

ð1Þ
eff does not provide a satisfactory

description of the magnetic properties of Co(II) clusters (even at low temperatures),
because it ignores the mixture of the ground states with the excited ones by the exchange
and Zeeman interactions. According to his idea, these excited states can be taken into
account in an effective field approximation. In the framework of such hybrid theory the
exchange interaction was included as a molecular field in the excited single-ion levels,
but treated exactly within the ground Kramers doublet states. In this way, Lines has
demonstrated how in the effective field approximation the problem of interacting Co(II)
ions can be reduced to that of sets of independent fictitious spins, �i ¼ 1=2, each with a
temperature-dependent g factor g(T). Then the hitherto neglected ground doublet matrix
elements of exchange (first term in Equation (4.6)) have been reintroduced into the
problem exactly, leading to the resulting cluster Hamiltonian of the form

Ĥeff ¼ �ð50=9ÞJ
X
i5k

ŝiŝk þ gðTÞ	HZ

X
i

�̂iZ: ð4:8Þ

This Hamiltonian is of the same form as Ĥ
ð1Þ
eff , but with g0 replaced with g(T ).

As distinguished from the initial Hamiltonian, Equation (4.4), the effective Lines
Hamiltonian, Equation (4.8), acts within the restricted space involving ground Kramers
doublet states.

4.2. Pseudo-spin-1/2 Hamiltonian for an exchange-coupled Co(II) pair

4.2.1. Brief overview of the existing theories

The conventional Lines theory deals with the Co(II) ions in a perfect octahedral ligand
fields, and hence no magnetic anisotropy is imposed. Let us focus on a more general
situation when the symmetry of the positions occupied by Co(II) ions is lower than the
cubic one. In this case, the interplay between the SO coupling and the low-symmetry
crystal field gives rise to a single-ion anisotropy, this is well studied for Co(II) monomeric
compounds (see [5] and references therein). The Lines model generalised to the case of
anisotropic orbitally degenerate ions was successfully used for the description of the
magnetic behaviour of different clusters containing Co(II) ions [137–140] and other
transition metal ions [115,116] with unquenched orbital angular momenta. In these works,
instead of the use of the effective field approximation, the direct diagonalisation of the full
matrix including SO coupling, low-symmetry crystal field, magnetic exchange and
Zeeman interactions was performed. This procedure was significantly simplified by the
use of the ITO techniques, the details of this method can be found in many textbooks
(see, e.g. [4,14,15,141,142]).
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Another kind of theoretical treatment that is widely employed [101,106–112] for the

analysis of INS spectra and magnetic properties of Co(II) complexes and extended systems

is based on the use of the effective Hamiltonian describing the interaction between the low-

lying Kramers doublets. Such pseudo-spin-1=2-formalism is applicable for the description

of the magnetic data at low temperatures when only the ground Kramers doublets of the

Co(II) ions are populated. There are two different approaches dealing with this formalism,

namely, the phenomenological and the microscopic. The main advantage of the

phenomenological approach is its simplicity that is a consequence of the fact that the

effective pseudo-spin-1/2 Hamiltonian is constructed with the aid of symmetry arguments

only. The main disadvantage is a large number of unknown parameters, namely, the

components of J- and g-tensors and the parameters describing temperature-independent

paramagnetic (TIP) contribution [143]. On the contrary, the microscopic approach being

more complicated allows to find a relationship between the set of phenomenological

parameters and the inherent parameters of the system.

4.2.2. Phenomenological Hamiltonian: inelastic neutron scattering studies
of polyoxometalates encapsulating Co(II) clusters

The usage of the phenomenological pseudo-spin-1/2 Hamiltonian for the description of

the low temperature dependence of the magnetic susceptibility often gives a multitude

of the sets of the best fit parameters. Without additional independent information about

the energy levels, neither the adequacy of a model nor the correctness of these parameters

can be tested. From this point of view, the use of spectroscopic techniques providing

a direct access to the energy splittings seems to be quite useful.
In a series of recent works [106–112], the INS technique was applied to the study of the

magnetic exchange in dimeric, trimeric and tetrameric Co(II) units. The first example

of this kind represents the Keggin derivative K8[Co2(D2O)(W11O39)] � nD2O [106].

Encapsulation of two Co(II) ions in the Keggin structure leads to the dimer shown in

black in Figure 11. The two Co(II) ions in this complex are inequivalent. The divalent high-

spin octahedral cobalt ion has a 4T1 ground state split into six Kramers doublets by the SO

coupling and the low-symmetry crystal field, with only the ground Kramers doublet being

significantly populated in the temperature range of 1.5–30K. This gound Kramers doublet

can be described by the effective spin j1 ¼ 1=2. The divalent cobalt ion in the tetrahedral

environment has a ground orbital singlet 4A2; that is, this state possesses only spin

(s2 ¼ 3=2).
The effective Hamiltonian describing the exchange interaction between two Co(II) ions

in the Kramers doublet states can be written as

Ĥex ¼ �2J �̂
1
Zŝ

2
Z þ 
 �̂

1
Xŝ

2
X þ �̂

1
Yŝ

2
Y

� �� �
: ð4:9Þ

Provided 
 6¼ 1, onlyMJ (but not J) is a good quantum number and the eigenvectors of the

Hamiltonian, Equation (4.9), are given by the following linear combinations:

 nðMJÞ ¼
X
J

anðJ,MJÞ j1, s2, J,MJ

�� �
, ð4:10Þ

where index n is introduced to distinguish different states with the same MJ value.
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The details of the calculation of neutron cross-section are given in [142], in which

the relative INS intensities for all allowed j n MJð Þi ! j n0 ðM
0
JÞi transitions have been

calculated. The analysis of the INS spectra provides the energy-level diagram shown in

the left-side part of Figure 12. The best-fit parameters are: J ¼ �2:24 meV, 
 ¼ 0:33.
The value of the anisotropy parameter 
 ¼ 0:33 indicates that the situation is intermediate

Figure 12. Experimentally determined energy pattern K8[Co2(D2O)(W11O39)] complex (left) and
that calculated with the best-fit parameters J ¼ �2:24meV, 
 ¼ 0:33 (right). The observed cold
transitions and the calculated wave-functions are shown.

Figure 11. The structure of the K8[Co2(D2O)(W11O39)] complex. The black polyhedra contains an
oxo-coordinated Co(II) ions, and the white octahedra contains an oxo-coordinated W atoms.
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between the Heisenberg (
 ¼ 1) and the Ising (
 ¼ 0) limits, and it is more close to the

Ising one. The right-hand side of Figure 12 shows the energy levels and corresponding

wave-functions calculated with this set of parameters. The obtained wave-functions were

used to compute the relative intensities of the observed transitions. The obtained best-fit

parameters were further used to calculate the temperature dependence of the magnetic

susceptibility. In this calculation, the g value for the tetrahedral Co(II) ion was assumed

to be equal to 2, because the octahedral site the ratio 
 ¼ g?=gjj was fixed and g? was the

only adjustable parameter. The best-fit to the experimental �T versus T curve was achieved

for g? ¼ 2:3 that corresponds to gjj ¼ 7:0. The �T versus T curve calculated with this set

of parameters is in a perfect agreement with the experimental data (Figure 13). The

obtained gjj and g? are reasonable g-values for a Co(II) site with slightly distorted

octahedral coordination [143].
Later on, the exchange interaction in the cobalt tetramer [Co4(D2O)2(PW9O34)2]

10�

was studied with the aid of INS technique combined with the analysis of thermodynamic

properties including specific heat and magnetic susceptibility [109]. The structure of this

compound is shown in Figure 14. It represents a tetrameric rhomb-like centrosymmetrical

cluster Co4O16 of D2h symmetry formed by four coplanar edge-sharing CoO6 octahedra.

The following effective pseudo-spin-1/2 exchange Hamiltonian was used to describe the

pattern of low-lying energy levels:

Ĥex ¼ �2
X

�¼X, Y, Z

J� �̂1��̂
3
� þ �̂

1
��̂

4
� þ �̂

2
��̂

3
� þ �̂

2
��̂

4
�

� �
þ J 0� �̂

1
��̂

2
�

� �
: ð4:11Þ

In Equation (4.11) the two dominant exchange pathways J and J0 correspond to the

interactions along the edges and the short diagonal of the rhomb, respectively, while the

interactions along the long diagonal is neglected (Figure 14). The analysis of the INS

spectra led us to the following set of parameters: JZ ¼ 1:51 meV, JX ¼ 0:70 meV,

Figure 13. Measured magnetic susceptibility of a polycrystalline sample between 2 and 50K
(full circles) and �T vs. T curve calculated with the set of parameters: J ¼ �2:24meV, 
 ¼ 0:33,
g? ¼ 2:3, gjj ¼ 7:0 (solid line).
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J 0Z ¼ 0:46 meV, J 0X ¼ 0:44 meV, r ¼ JX=JY ¼ J 0X=J
0
Y ¼ 1:6. Both interactions turned out

to be ferromagnetic and anisotropic with JZ 4 JX, JY and J 0Z 4 J 0X, J
0
Y. This set of

parameters allows to reproduce the observed temperature dependence of the magnetic heat

capacity and also the experimental �T versus T curve (see [109] for more detail).
The INS technique was also used for the study of the exchange interactions in a more

complex pentameric Co(II) cluster [Co3W(D2O)2(CoW9O34)2]
12�, which contains three

octahedral and two tetrahedral oxo-coordinated Co(II) ions [110]. This study revealed two

kinds of highly anisotropic exchange interactions in this compound: a ferromagnetic

interaction between the octahedral Co(II) ions and an antiferromagnetic interaction

between the octahedral and the tetrahedral Co(II) ions. The set of parameters of the
effective pseudo-spin-1/2 Hamiltonian derived from the analysis of INS spectra was shown

to reproduce, in a satisfactory manner, the susceptibility, magnetisation and INS

properties of the compound.
Finally, we should mention the INS investigations of two trimeric Co(II) clusters:

[Co3W(D2O)2(ZnW9O34)2]
12� [111] and [(NaOH2)Co3(D2O)(P2W15O56)2]

17� [112]. In these

considerations different orientations of anisotropic exchange tensors were taken into

account, which were correlated with the molecular symmetries of the complexes.
Summarising, one can conclude that the INS technique proved to be an efficient

tool for the determination of the parameters of the phenomenological pseudo-spin-1/2

Hamiltonian.

4.2.3. Microscopic approach to the pseudo-spin-1/2 Hamiltonian: discussion of the
magnetic anisotropy

Recently [114], the microscopic Lines model has been generalised to the case of anisotropic

Co(II) ions. The system under study represents a pair of the Co(II) ions (A and B)

occupying identical octahedral positions, with the local coordinate frames associated with
the sites A and B being coplanar.

First, let us consider the case when the octahedral ligand surroundings of Co(II) ions are

slightly distorted so that the SO coupling significantly exceeds the low-symmetry crystal

field. We also assume that the SO coupling is strong as compared to the
exchange interaction. Under these conditions, the full Hamiltonian of the pair can be

Figure 14. The structure of Co4O16 cluster and the network of the exchange parameters.
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split into the non-perturbed SO coupling Hamiltonian Ĥ0 and the perturbation V̂ that

includes exchange, Zeeman interactions and low-symmetry crystal field (axial and rhombic):

V̂ ¼ �2JŝAŝB þ
X
i¼A,B

D l̂ iZ

� 
2
�2=3


 �
þ D0 l̂ iX

� 
2
� l̂ iY

� 
2
 �
þ 	H � 3=2ð Þ�l̂i þ geŝi

h i� �
,

ð4:12Þ

where D and D0 are the axial and rhombic crystal field splitting parameters, respectively.

The isotropic Heisenberg form of the exchange interaction between the true spins 3/2 is

assumed. The Hamiltonian Ĥ ¼ Ĥ0 þ V̂ operates within the total space

�jAjB ðmjAmjBÞ � �Að jAmjAÞ�Bð jBmjBÞ: ð4:13Þ

In order to pass to the effective pseudo-spin-1/2-Hamiltonian, one can apply the

second-order perturbation theory. The result for the first-order pseudo-spin-1/2

Hamiltonian is given by Equation (4.6). The presence of the low-symmetry crystal field

terms in V̂ does not affect this result because the Kramers degeneracy cannot be removed

by the crystal field. As a result, the first-order Hamiltonian remains fully isotropic. The

second-order term involves the mixing of the ground Kramers doublet space with the

excited states and can be defined as

�1
2
1
2
m0jA,m

0
jB

� 
D ���Ĥð2Þeff �1
2
1
2
ðmjA,mjBÞ

��� E

¼ �
X
jAjB

1

DjAjB

X
m00

jA
m00

jB

�1
2
1
2
m0jA,m

0
jB

� 
D ���V̂ �jAjB m00jA,m
00
jB

� 
��� E

� �1
2
1
2
mjA,mjB

� �D ���V̂ �jAjB m00jA,m
00
jB

� 
��� E

,

ð4:14Þ

where DjAjB � EjAjB � E1=2 1=2 are the energy gaps between the unperturbed ground and

excited levels. By expressing the matrix Ĥ
ð2Þ
eff in terms of �̂A� and �̂B� , we arrive at the

following final expression for the effective pseudo-spin-1/2 Hamiltonian, which includes

both Ĥ
ð1Þ
eff and Ĥ

ð2Þ
eff :

Ĥeff ¼
X

�¼X,Y:Z

�2J��̂
A
� �̂

B
� þ g�	 �̂

A
� þ �̂

B
�

� �
H� ���	

2H2
�

� �
, ð4:15Þ

where H� is the component of the magnetic field along the �-th direction. The effective

exchange parameters involved in this Hamiltonian are given by

JZ ¼
25

9
J�

40

243��
15J2 � 4JD
� �

,

JX ¼
25

9
J�

40

243��
15J2 þ 2J D� 3D0

� �� �
,

JY ¼
25

9
J�

40

243��
15J2 þ 2J Dþ 3D0

� �� �
,

ð4:16Þ
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For the principle values of g-tensor, one can find the following expressions:

gZ ¼ g0 �
16

243��
25J� 3Dð Þ

3

2
�þ ge

� 	
,

gX ¼ g0 �
8

243��
50Jþ 3 D� 3D0

� �� � 3

2
�þ ge

� 	
,

gY ¼ g0 �
8

243��
50Jþ 3 Dþ 3D0

� �� � 3

2
�þ ge

� 	
:

ð4:17Þ

Finally, the parameters describing the van Vleck paramagnetism (TIP) are the following:

�X ¼ �Y ¼ �Z ¼ �
40

81 � �

3

2
�þ ge

� 	2

: ð4:18Þ

These equations provide the dependences of the parameters of the pseudo-spin-1/2

Hamiltonian on the basic parameters of the system. The mixing with the excited states
results in the appearance of the new terms in the exchange parameters and the principal
values of g-tensor. The additional terms in g containing D and D0 arise, as usually, from the
one-centre contributions and account for the anisotropy of the system. Provided D0 ¼ 0,
the magnetic anisotropy is axial, and the terms containing D0 lead to the rhombic

anisotropy. The second-order terms also contain magnetically isotropic contributions
dependent on the ratio J=��. These terms describe the influence of the bicentre interactions
on g-factors. The results show a significant deviation of the molecular g-factors from those
for the monomeric moieties. The anisotropy of the exchange parameters (in general,
triaxial) appears due to the combined effect of the true isotropic exchange and low-

symmetry crystal fields. These parameters also contain isotropic contributions. The
second-order term contains the TIP contributions. In the adopted approximation, the TIP
proves to be isotropic and independent of the parameters J, D and D0; it is simply twice
the value for the octahedral monomeric unit. Note that the anisotropy of the effective
pseudo-spin-1/2 exchange Hamiltonian is in fact the result of single-ion anisotropy rather

than a consequence of the exchange anisotropy. The latter could appear only if the
orbitally dependent terms are included in the initial exchange Hamiltonian. This will be
discussed in Section 6.

Now let us consider another limit when the axial crystal field is strong as compared with
the SO coupling and the exchange interaction [144,145]. In this case, the non-perturbed
Hamiltonian Ĥ0 should include the axial components of the crystal field while all other

interactions act as a perturbation V̂. The axial field splits the cubic 4T1 term of the Co(II) ion
into the orbital singlet (state with orbital angular momentum projection ml ¼ 0) and the
orbital doublet (state withml ¼ 	1). Let us focus on the case of negative Dwhen the ground
state is the orbital doublet for which the orbital angular momentum remains unquenched.
The SO coupling produces further splitting of these levels into the Kramers doublets.

Assuming that the splitting caused by the axial field significantly exceeds the SO splitting
and neglecting the SO mixing of the orbital doublet and the orbital singlet, we arrive at the
scheme of the energy levels shown in Figure 15. The SO interaction takes an axial form with
the only non-vanishing Z-component ĤSO s ¼ 3=2,ml ¼ 	1ð Þ ¼ � 3=2ð Þ � � l̂Z ŝZ within the
ground orbital doublet, which leads to the splitting of this term into four equidistant
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Kramers doublets with the state based on ml ¼ 	1,ms ¼ �3=2 being of the lowest energy.

We will assume that the energy gap between the ground Kramers doublet with

ml ¼ 	1,ms ¼ �3=2 and the first excited one (ml ¼ 	1, mS ¼ �1=2) exceeds the exchange
splitting so that at low temperatures we can restrict ourselves by considering only the ground

Kramers doublet for each Co ion. All matrix elements of the operators ŝiX, ŝ
i
Y are vanishing

within the basis set of the ground Kramers doublet:

ml ¼ 	1,ms ¼ �3=2
� ��ŝiX ml ¼ 	1,ms ¼ �3=2

�� �
¼ 0,

ml ¼ 	1,ms ¼ �3=2
� ��ŝiY ml ¼ �1,ms ¼ 	3=2

�� �
¼ 0,

ð4:19Þ

etc., and hence the Hamiltonian, Equation (3.12), dealing with the ‘true’ Co(II) spins

(s¼ 3/2) is reduced to the Ising form of the pseudo-spin-1/2 Hamiltonian:

Heff ¼ �2Jjjŝ
A
ZŝBZ þ gjj	 �̂

A
Z þ �̂

B
Z

� �
HZ ��? HX

2 þHY
2

� �
, ð4:20Þ

where the component of the ground Kramers doublet level with ml ¼ �1,ms ¼ 3=2
ml ¼ 1,ms ¼ �3=2ð Þ corresponds to the projection � ¼ 1=2 � ¼ �1=2ð Þ of the pseudo-

spin-1/2.

Jjj ¼ 9J�
3J2

� �j j
, gjj ¼ 3ð ge � �Þ, �? ¼ 	

2 g2e
� �j j
þ

9�2

4 Dj j þ 9� �j j

� 	
: ð4:21Þ

The pseudo-spin-1/2 basis is chosen in such a way that the component of the ground

Kramers doublet level with ml ¼ �1, ms ¼ 3=2 ml ¼ 1,ms ¼ �3=2ð Þ corresponds to the

projection � ¼ 1=2 � ¼ �1=2ð Þ of the pseudo-spin-1/2. The term proportional to J2 in the

expression of Jjj in Equation (4.21) represents the second-order correction arising from

the mixing of the ground and excited manifolds of the cobalt pairs by the exchange

Figure 15. Splitting of the ground cubic 4T1(3d
7) term of the Co(II) ion by axial crystal field and

SO coupling in the limit of a strong negative axial field (spin–orbital mixing of orbital singlet and
orbital doublet is neglected).
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interaction. The TIP contribution �? in Equation (4.21) appears as a result of the Zeeman
mixing of the ground Kramers doublet jml ¼ 	1,ms ¼ �3=2i with the three lowest excited
states (Figure 15) and the highest orbital singlet. One can see that the system in the ground
state is highly anisotropic and, in particular, first-order Zeeman splitting disappears
in the perpendicular field. For this reason, the considered case can be referred to as axial
or Ising limit.

The theory in its present form is not directly applicable to the case of moderate
low-symmetry crystal field when the described perturbation schemes fail. In the last case
both the low symmetry crystal field and the SO terms should be included into the zeroth-
order Hamiltonian, while the perturbation will only involve the exchange and Zeeman
terms. In this approximation the parameters of the effective Hamiltonian calculated up
to the first-order prove to be dependent on the parameters D and D0, the procedure for the
case of axially distorted systems was outlined in [101]. At the same time, an important
effect of the exchange mixing of spin–orbital multiplets was not discussed in [101]. The
above-described approach is also restricted by the assumption that the local anisotropy
axes for both interacting Co ions are parallel. Recently, a more general case of different
orientations of the local anisotropy axes has been analysed and the microscopic derivation
of the pseudo-spin-1/2 Hamiltonian for this case has been performed [146].

5. Orbitally dependent exchange: theoretical background

5.1. Derivation of the orbitally dependent exchange Hamiltonian

In Section 4, the exchange interaction between the ions possessing unquenched orbital
angular momenta has been treated in the framework of the Lines model, that is, the HDVV
spin Hamiltonian has been assumed. At the same time, this approximation has a restricted
area of applicability and often a more general orbitally dependent exchange Hamiltonian is
required. In this section the orbitally dependent kinetic exchange Hamiltonian [91–94] will
be described along with its applications to the analysis of the magnetic anisotropy in clusters
containing metal ions with unquenched orbital angular momenta.

The ions A and B are assumed to be in the crystal field states 2 sAþ1�A and 2sBþ1�B,
where �A,�B stand for the irreducible representations of the local point groups of the
ions and sA, sB are the local spins. One or both of these states are assumed to be orbitally
degenerate. We will only consider the kinetic exchange interaction that dominates in most
cases [84], thus neglecting the potential exchange contribution. According to Anderson’s
basic concept [84,85] (Section 2.1), the kinetic exchange Hamiltonian operating within the
2 sAþ1�A �

2sBþ1�B manifold appears in the second order of perturbation theory when we
start with the Hamiltonian

Ĥ ¼ Ĥ0 þ V̂AB, ð5:1Þ

where Ĥ0 is the unperturbed Hamiltonian that includes local crystal field, intra-center
inter-electronic interactions, and inter-centre Coulomb repulsion and V̂AB is the operator
of the inter-centre one-electron transfer (Hubbard Hamiltonian) that plays the role of the
perturbation. The operator V̂AB can be presented as follows:

V̂AB ¼
X
�A�A

X
�B�B

t �A�A,�B�Bð Þ
X
�

ĉþ�A�A �
ĉ�B�B � þ ĉþ�B�B �

ĉ�A�A �

� 

, ð5:2Þ
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where the operator ĉþ�A�A �
(ĉ�A�A �) creates (destroys) the electron on the orbital ’�A�A of

the centre A with the spin projection �, and t �A�A,�B�Bð Þ is the transfer integral.

For example, for the important particular case of cubic local symmetry it is convenient to

use a strong crystal field scheme, so the irreducible representations �i i ¼ A,Bð Þ can be

either t2 or e. Since all transfer pathways �A�A $ �B�B are taken into account in Equation

(5.2), the present consideration is quite general and is not restricted to a particular overall

symmetry of the system.
The eigenvectors of the Hamiltonian Ĥ0 belonging to the 2 sAþ1�A dnA

A

� �
� 2sBþ1�B dnB

B

� �
manifold can be presented as the product of the one-centre states


AsA�AmA�A, 
BsB�BmB�Bj i ¼ 
AsA�AmA�Aj i 
BsB�BmB�Bj i,

where mi i ¼ A,Bð Þ is the spin projection, � i enumerates the basis of the irreducible

representation �i and the symbol 
i is introduced to specify a given 2 siþ1� i term in the case

when several crystal field terms of the same symmetry exist. To find the one-centre wave

functions within a strong crystal field scheme, one has to diagonalise the matrices of the

intra-centre inter-electronic interaction [100]. As a result, they are represented by the

following linear combination of the wave functions forming the many-electron strong

crystal field basis:


isi�imi�ij i ¼
X
ki

kih j
ii d
ni , kisi�imi�ij i, ð5:3Þ

where the symbol ki indicates the different intermediate states resulting in the si �iðd
niÞ

term. Thus, for the case of cubic local symmetry ki is defined as follows:

ki � tmi

2 s0i�
0
i

� �
eni�mi s00i �

00
i

� �
: ð5:4Þ

The operator V̂AB mixes the ground electronic configuration dnA
A � dnB

B with the excited

CT configurations dnA�1
A � dnBþ1

B and dnAþ1
A � dnB�1

B . The wave-functions for the CT con-

figurations (the excited eigenvectors of the unperturbed Hamiltonian Ĥ0) can also be taken

as the products of the wave functions of the reduced and oxidised configurations of

the constituent ions. We denote the oxidised states of the ion i (dni�1
i -configuration) by

j �
i �si ��i �mi
��ii, and the reduced states (dniþ1

i -configuration) by j ~
i ~si ~�i ~mi
~�ii. The symbol

�
i ~
ið Þ is used to distinguish different cubic crystal field terms �si ��ið~si ~�iÞ of the same

symmetry. The wave function of the oxidised crystal field state is given by

�
i �si ��i �mi
��i

�� �
¼
X

�k
i

�kij �
i
� �

dni�1, �ki �si ��i �mi
��i

��� �
, ð5:5Þ

and similar expression can be written down for the reduced state. For cubic local

symmetry the symbol �ki is defined as follows:

�ki � t �mi

2 �s0i
��0i

� �
eni� �mi�1 �s00i

��00i
� �

: ð5:6Þ

The coefficients h �kij �
ii in Equation (5.5) form the eigenvectors of the matrices of the

intra-centre Coulomb interaction for the dni�1
i ion.
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The effective second-order Hamiltonian operating within the 2sAþ1�A 
Að Þ�
2sBþ1�B 
Bð Þ manifold is the following:

Ĥð2ÞðA,BÞ ¼ �
X

�A�B�0
A

�0
B

X
�A�B� 0A�

0
B

tð�A�A,�B�BÞtð�
0
B�
0
B,�

0
A�
0
AÞ

�
X
��0

X
�
A �sA ��A

X
~
B ~sB ~�B

ĉþ�A�A �
Ĝð �
A �sA ��AÞĉ�0

A
� 0
A
�0 ĉ�B�B�Ĝð ~
B ~sB ~�BÞĉ

þ
�0
B
� 0
B
�0

" �
Að�sA ��AÞ þ " ~
Bð~sB ~�BÞ

2
4

þ
X

�
B �sB ��B

X
~
A ~sA ~�A

ĉþ�0
B
� 0
B
�0Ĝð �
B �sB ��BÞĉ�B�B � ĉ�0

A
� 0
A
�0Ĝ ~
A ~sA ~�A

� �
ĉþ�A�A �

" �
Bð�sB ��BÞ þ " ~
A ð~sA
~�AÞ

3
5:

ð5:7Þ

Here " �
ið�si ��iÞ is defined as the difference between the energies of �
i �si ��i(d
ni�1
i ) and


isi�i(d
ni
i ) terms, and " ~
i ð~si ~�iÞ represents the difference between the energies of ~
i ~si ~�i

(d niþ1
i ) and 
isi�i(d

ni
i ) terms. Finally, Ĝð �
i �si ��iÞ and Ĝð ~
i ~si ~�iÞ are the partial projection

operators, for instance

Ĝ �
i �si ��i

� �
¼
X
�mi

��i

�
i �si ��i �mi
��i

�� �
�
i �si ��i �mi

��i
� ��: ð5:8Þ

In the framework of the many-electron approach, the crystal field states of the ions
in their normal, reduced and oxidised forms are determined with due account of all

configuration interactions. This leads to the appearance of the complex multiplet structure
of the energy patterns of dni and dni	1 ions implied by the Tanabe–Sugano diagrams [100].
In this respect, a significant difference between the present many-electron theory of the

kinetic exchange and the conventional one-electron approach should be pointed out. This
difference can be illustrated by considering the particular case of cubic local symmetry.
Since in the one-electron approximation the configuration mixing is not taken into

account, each si �i d
nið Þ term originates from the only tmi

2 eni�mi configuration. As a result,
the one-site operators ĉþ�i�i �

Ĝð �
i �si ��iÞĉ�0
i
� 0
i
�0 and ĉ�i�i �Ĝð ~
i ~si ~�iÞĉ

þ
�0
i
� 0
i
�0 should not change the

number of electrons occupying t2 and e orbitals. This requirement can be satisfied only
provided that �i ¼ �0i. Therefore in this approximation, the Hamiltonian, Equation (5.7),
can only contain the products of the transfer integrals of the same kind, namely

tðt2, t2Þtðt2, t2Þ, t e, eð Þt e, eð Þ and t t2, eð Þt t2, eð Þ. However, in the framework of the many-
electron approach dealing with the configuration interactions, the one-site operator has
non-vanishing matrix elements in si�i d

nið Þ basis not only for �i ¼ �0i but also for �i 6¼ �0i.

This means that along with the products of transfer integrals of the same kind, the
products of different integrals like t t2, t2ð Þt e, eð Þ can also contribute to the exchange

Hamiltonian.
At the next step, let us pass from the second quantisation representation of the effective

Hamiltonian to the exchange Hamiltonian expressed in terms of standard local orbital and
spin operators. The creation operator ĉþ�i�i �

can be regarded as the double tensor operator

[147] that acts as a spherical ITO of rank 1/2 in the spin subspace and as ITO of �i type
in the coordinate subspace, with two spin projections � ¼ 	1=2 being the components
of spherical tensor and �i being the components of the cubic tensor of �i type. We will

follow the conventionally accepted rule for the choice of phases of spherical ITOs,

ĉ�i�i � ¼ �1ð Þ
ð1=2Þ�� ĉþ�i�i ��

, ð5:9Þ
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that is implied by the requirement of the Hermitian conjugation of the creation and

annihilation operators and the fact that the one-electron basis is real (see the book by

Varshalovich et al. [141]).
Since the partial projection operators Ĝð �
i �si ��iÞ and Ĝð ~
i ~si ~�iÞ are scalars in both

coordinate and spin subspaces, the one-site operators ĉþ�i�i �
Ĝð �
i �si ��iÞĉ�0

i
� 0
i
�0 and

ĉ�i�i �Ĝð ~
i ~si ~�iÞĉ
þ
�0
i
� 0
i
�0 represent the double tensor operators which are transformed as the

direct product �i � �0i ¼
P

� in the coordinate subspace and as the direct product

Dð1=2Þ �Dð1=2Þ ¼
P

k¼0,1 D
ðkÞ in the spin subspace. In general, these double tensor operators

are reducible and they can be expressed in terms of ITOs X̂� � k qð�i �
0
i, �
i �si ��iÞ and

Ŷ� � k qð�i �
0
i, ~
i ~si ~�iÞ by means of the following unitary transformations:

ĉþ�i�i�
Ĝð �
i �si ��iÞĉ�0

i
� 0
i
�0 ¼ ð�1Þ

ð1=2Þ��0
X
k q

C
k q
1=2�1=2��0

X
� �

��
�� �i�i�

0
i�
0
i

� �
X̂��kqð�i�

0
i, �
i �si ��iÞ,

ð5:10Þ

ĉ�i�i�Ĝð ~
i ~si ~�iÞĉ
þ
�0
i
� 0
i
�0 ¼ ð�1Þ

ð1=2Þ��
X
k q

C
k q
1=2�� 1=2 �0

X
� �

��
�� �i�i�

0
i�
0
i

� �
Ŷ��kqð�i�

0
i, ~
i ~si ~�iÞ:

ð5:11Þ

In Equations (5.10) and (5.11), the values h�� j �i�i�
0
i�
0
ii are the Clebsch–Gordan coeffi-

cients for the local point group of the centre i. The reverse transformations are the following:

X̂��kq �i�
0
i, �
i �si ��i

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2kþ 1Þ=2

p X
��0

C1=2 �
1=2 �0 k q

X
�i � 0i

�i �i �0i�
0
i

�� ��
� �

ĉþ�i�i�
Ĝ �
i �si ��i

� �
ĉ�0

i
� 0
i
�0 ,

ð5:12Þ

Ŷ��kq �i�
0
i, ~
i ~si ~�i

� �
¼ ð�1Þkþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2kþ 1Þ=2

p X
� �0

C1=2 �0

1=2 � k q

�
X
�i � 0i

�i �i �0i �
0
i

�� ��
� �

ĉ�i�i�Ĝ ~
i ~si ~�i

� �
ĉþ�0

i
� 0
i
�0 : ð5:13Þ

In order to calculate the matrices of the operators X̂� � k q � � �ð Þ and Ŷ� � k q � � �ð Þ within the

basis of 
isi�i d
nð Þ, one can apply the Wigner–Eckart theorem [100], for example,


isi�im
0
i�
0
i

� ��X̂��kq �i�
0
i, �
i �si ��i

� �

isi�imi�ij i ¼ ½ð2si þ 1Þð�iÞ�

�1=2

� 
isi�ih X̂�k �i�
0
i, �
i �si ��i

� ���� ���
isi�iiC
sim
0
i

simikq
�i�

0
i �i�i��
�� �

,
� ð5:14Þ

where ð�iÞ is the dimension of the irreducible representation � i and the notation

� � �h � � �k k� � �i is used for the reduced matrix element. This allows us to express the operators

X̂� � k qð� � �Þ and Ŷ� � k qð� � �Þ in terms of orbital operators Ô i
� � and spin operators ŝ ik q, for

example,

X̂��kq �i�
0
i, �
i �si ��i

� �
¼


isi�i

��X̂�k �i�
0
i, �
i �si ��i

� ���
isi�i

D E
si
��ŝ ik��si� �

�i

��Ôi
�

���i

D E Ôi
�� ŝ

i
kq: ð5:15Þ
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Here Ô i
� � is the irreducible tensor operator acting in the orbital �i�i manifold. This

operator is defined in such a way that

�i Ôi
�

��� ����i

D E
¼ ð�iÞ

1=2, ð5:16Þ

so that the matrix elements of this operator coincide with the Clebsch–Gordan coefficients

�i�
0
i

� ��Ôi
�� �i�ij i ¼ �i�

0
i

�� �i�i��
� �

: ð5:17Þ

In the case of the cubic symmetry of the ligand surrounding the centre i, Ô i
� � represents

the cubic irreducible tensor. The operators ŝ i0 0 and ŝ i1 q q ¼ 0, 	1ð Þ act in the spin

subspace si mi and represent the unit operator and the cyclic components of the spin

operator, correspondingly. These cyclic components are defined as usually:

ŝ00 ¼ ŝ2, ŝ	1 ¼ �
1ffiffiffi
2
p ðŝx 	 iŝyÞ:

Now we are in the position to pass from the Hamiltonian, Equation (5.7), expressed

in terms of the creation and annihilation operators to the new representation of this

Hamiltonian involving the orbital operators Ô i
� � and the one-site spin operators. One

thus arrives at the following final formula for the effective exchange Hamiltonian:

ĤexðA,BÞ ¼ �2
X

�A�B�0
A

�0
B

X
�A�B� 0A�

0
B

X
��

X
�0� 0

��
�� �A�A�0A�

0
A

� �
�0� 0

�� �B�B�0B�
0
B

� �
ÔA

��Ô
B
�0� 0

� t �A�A,�B�Bð Þt �0B�
0
B,�

0
A�
0
A

� �
� F

ð0Þ
��0 �A,�

0
A,�B,�

0
B

� �
þ F

ð1Þ
��0 �A,�

0
A,�B,�

0
B

� �
ŝAŝB

h i
,

ð5:18Þ

where the parameters F
0ð Þ

� �0 � � �ð Þ and F
1ð Þ

� �0 � � �ð Þ are defined as follows:

F
ðkÞ
��0 �A,�

0
A,�B,�

0
B

� �
¼

ð�1Þkþ1

2 sAh ŝAk
�� ��sAi sBh ŝBk

�� ��sBi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Að Þ �Bð Þ

p

�

( X
�
A �sA ��A

X
~
B ~sB ~�B

" �
A �sA ��A

� �
þ " ~
B ~sB ~�B

� �� ��1

� 
AsA�A X̂�k �A�0A, �
A �sA ��A

� ���� ���
AsA�Ai 
BsB�Bh Ŷ�0k �B�0B, ~
B ~sB ~�B

� ���� ���
BsB�B

D E

þ
X

�
B �sB ��B

X
~
A ~sA ~�A

" �
B �sB ��B

� �
þ " ~
A ~sA ~�A

� �� ��1

� 
BsB�B X̂�0k �B�0B, �
B �sB ��B

� ���� ���
BsB�B

D E

AsA�A Ŷ�k �A�0A, ~
A ~sA ~�A

� ���� ���
AsA�A

D E)
:

ð5:19Þ
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As distinguished from the HDVVHamiltonian containing spin operators only, the effective
Hamiltonian, Equation (5.18), operates in both spin and orbital spaces of the interacting
orbitally degenerate ions. In fact, this Hamiltonian includes the orbital part (spin-
independent) and the mixed part that contains both orbital and spin operators. The last part
also contains the orbitally independent term / ŝA ŝB as a particular contribution.

5.2. How to use the developed formalism: an illustrative example

In spite of the fact that the consideration of the orbitally-dependent exchange in a general
form presented in Section 5.1 might look sophisticated, the application of the developed
approach is rather simple. Let us illustrate the application of this formalism taking a
corner shared bioctahedron (Figure 16) as an example, in which the local ligand
octahedral surroundings of the metal ions are strongly stretched along the molecular C4

axis (ZA, ZB axes are chosen to coincide with this C4 axis) so that the local symmetry of
each metal sites is approximately D4h and the overall symmetry of the pair is D4h as well.
To demonstrate the procedure, we will focus on the simplest case of one-electron
metal ions.

The tetragonal ligand field splits the cubic 2T2 t12
� �

term of each metal ion into the
orbital doublet 2E and the orbital singlet 2B2, with the orbital doublet being the ground
term in the case of the elongated octahedra. Since the tetragonal splitting is assumed to be
large, it is reasonable to consider the ½2Eðe1Þ�A � ½

2Eðe1Þ�B -exchange problem neglecting
the contributions from the excited 2B2-state (Figure 16b). Substitution of the Clebsch–
Gordan coefficients for the D4 point group into Equation (5.18) gives the following
expression for the exchange Hamiltonian:

ĤexðA,BÞ ¼ R̂0 þ R̂1ŝAŝB: ð5:20Þ

Figure 16. The illustration for the ½2Eðe1Þ�A � ½
2Eðe1Þ�B- exchange problem: (a) coordinate axes and

(b) tetragonal splittings of local 2T2ðt
1
2Þ terms and effective exchange coupling.
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Here R̂k ðk ¼ 0, 1Þ are the orbital operators defined by

R̂k ¼ �2t
2
� F

ðkÞ
A1A1

ÔA
A1
ÔB

A1
þ F

ðkÞ
B1B1

ÔA
B1
ÔB

B1
þ F

ðkÞ
A2A2

ÔA
A2
ÔB

A2
þ F

ðkÞ
B2B2

ÔA
B2
ÔB

B2

h i
, ð5:21Þ

and the short notation F
ðkÞ
�� � F

ðkÞ
��ðe, e, e, eÞ is introduced. The matrices Ô� defined

in the tetragonal E-basis �, " (� / YZ, " / XZ), can be expressed in terms of the

Pauli matrices:

ÔA1
¼

1 0

0 1

� 	
, ÔB1

¼
1 0

0 �1

� 	
¼ �̂Z,

ÔB2
¼

0 1

1 0

� 	
¼ �̂X, ÔA2

¼
0 1

�1 0

� 	
¼ �i�̂Y:

ð5:22Þ

The following two equivalent �-type transfer pathways are allowed by the tetragonal

overall symmetry of the dimer: �A $ �B and "A $ "B. The corresponding transfer

parameter will be denoted as

t�� ¼ t"" � t�: ð5:23Þ

These transfer processes mix the ground ½2Eðe1Þ�A � ½
2Eðe1Þ�B-manifold of the pair

with different CT states corresponding to e0Ae
2
B and e2Ae

0
B configurations. The oxidised

e0-configuration gives rise to the only �s �� vacuum one-centre state  ½1A1ðe
0Þ�. The one-

centre ~s ~�-states for the reduced e2-configuration and the energies of these states are given

in Table 1. The mixing of the ground manifold with different CT states by the �-type
transfer is shown in Figure 17, in which each ground and CT state is represented by the

only Slater determinant (microstate).
To illustrate the procedure of the calculation of the reduced matrix elements of the

operators X̂��kq ee, 1A1ðe
0Þ

� �
, we will consider in detail one selected reduced matrix

element, let us say eh kX̂B21 ee, 1A1ðe
0Þ

� �
eik . Using the values of the Clebsch–Gordan

coefficients E�E"jB2h i ¼ E"E� j B2h i ¼ 1=
ffiffiffi
2
p

and Wigner coefficient C1=2 1=2
1=2�1=2 11 ¼ �

ffiffiffiffiffiffiffiffi
2=3
p

,

one finds that

X̂B211 ee, 1A1ðe
0Þ

� �
¼ �

1ffiffiffi
2
p ĉþ� Ĝ½0�ĉ �" þ ĉþ" Ĝ½0�ĉ ��

n o
: ð5:24Þ

In this equation Ĝ½0� ¼ 0j i 0h j and a short notation 1A1 e0
� ��� �
� 0j i for the vacuum state is

used. Let us calculate the matrix element

�h jX̂B211 ee, 1A1ðe
0Þ

� �
�"j i ¼ �

1ffiffiffi
2
p �h jĉþ� 0j i 0h jc �" �"j i þ �h jĉþ" 0j i 0h jĉ �� �"j i
� �

: ð5:25Þ

Since ĉþ" 0j i ¼ "j i, the matrix element vanishes, �h j ĉþ" 0j i ¼ � j "h i ¼ 0, and hence the second

term in the parentheses also vanishes. For the first term, one finds that �h j ĉþ� 0j i 0h j ĉ �" �"j i ¼
� j �h i 0 j 0h i ¼ 1.

Therefore

�h jX̂B211 ee, 1A1ðe
0Þ

� �
�"j i ¼ �

1ffiffiffi
2
p : ð5:26Þ
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On the other hand, applying the Wigner–Eckart theorem, Equation (5.14), to the double

ITO X̂B2 11½e e,
1A1ðe

0Þ� and taking into account that E � j E" B2h i ¼ 1, one can write

�h jX̂B211 ee, 1A1ðe
0Þ

� �
�"j i ¼ �

1ffiffiffi
6
p eh kX̂B21 ee, 1A1ðe

0Þ
� �

eik : ð5:27Þ

Then, by comparing Equations (4.26) and (4.27) one finds that

eh kX̂B21 ee, 1A1ðe
0Þ

� �
eik ¼

ffiffiffi
3
p
: ð5:28Þ

All reduced matrix elements of the operators X̂��kq½ee,
1A1ðe

0Þ� calculated in this way are

collected in Table 2.

Figure 17. Different one-electron transfer processes and related CT states of ½1Eðe1Þ�A� ½
1Eðe1Þ�B-

dimer (only the A! B transfer is shown).

Table 1. The one-centre ~s ~�-states for the reduced e2-configuration and
corresponding energies (A, B and C are the Racah parameters).

~s ~�(e2)-states Energies of the ~s ~�(e2)-states

 ½1A1ðe
2Þ� ¼ 1ffiffi

2
p � ��
�� ��þ " �"j j
� �

, Aþ 7Bþ 4C

 ½1B1ðe
2Þ� ¼ 1ffiffi

2
p � ��
�� ��� " �"j j
� �

, Aþ Bþ 2C

 1B2ðe
2Þ

� �
¼ 1ffiffi

2
p � �"j j � ��"

�� ��� �
, Aþ Bþ 2C

 3A2ðe
2Þ, m ¼ 1

� �
¼ �"j j A� 5B

 3A2ðe
2Þ,m ¼ 0

� �
¼ 1ffiffi

2
p � �"j j þ ��"

�� ��� �
 3A2ðe

2Þ, m ¼ �1
� �

¼ �� �"
�� ��
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Let us pass to the calculation of the reduced matrix elements of the operator

Ŷ��kqðee, ~s ~�Þ taking the matrix element "h jŶB2 1 1½ e e,
3A2ðe

2Þ �j ��i as an example. First,

consider

ŶB211 ee, 3A2ðe
2Þ

� �
¼ �

1ffiffiffi
2
p ĉ ��Ĝ

3A2ðe
2Þ

� �
ĉþ" þ ĉ �"Ĝ

3A2ðe
2Þ

� �
ĉþ�

n o
: ð5:29Þ

In this equation, the following notation is used:

Ĝ 3A2ðe
2Þ

� �
¼

X
~ms¼0,	1

3A2ðe
2Þ,ms

�� �
3A2ðe

2Þ,ms

� ��:
Then the matrix element can be presented as a sum of two terms

"h jŶB211 ee, 3A2ðe
2Þ

� �
��
�� � ¼ a1 þ a2, ð5:30Þ

where a1 and a2 are the following expressions:

a1 ¼ �
1ffiffiffi
2
p

X
ms¼0,	1

"h jĉ ��
3A2ðe

2Þ,ms

�� �
3A2ðe

2Þ,ms

� ��ĉþ" ��
�� �,

a2 ¼ �
1ffiffiffi
2
p

X
ms

"h jĉ �"
3A2ðe

2Þ,ms

�� �
3A2 e2

� �
,ms

� ��ĉþ� ��
�� �: ð5:31Þ

One can see that a2 ¼ 0. This follows from the following equations:

 3A2ðe
2Þ,ms ¼ 1

� �� ��ĉþ� ��
�� � ¼ �"j jh j � ��

�� ��� ¼ 0,

 3A2ðe
2Þ,ms ¼ 0

� �� ��ĉþ� ��
�� � ¼ 1ffiffiffi

2
p � �"j j þ ��"

�� ��� �� ���� � ��
�� ��� ¼ 0,

 3A2ðe
2Þ,ms ¼ �1

� �� ��ĉþ� ��
�� � ¼ �� �"

�� ��� �� � ��
�� ��� ¼ 0:

ð5:32Þ

To calculate a1, one should take into account the following interrelations:

3A2ðe
2Þ,ms ¼ 1

� ��ĉþ�� "j i ¼ �"j j
�� ��"
�� ��� �
¼ 0,

3A2ðe
2Þ,ms ¼ �1

� ��ĉþ�� "j i ¼ �� �"
�� �� �� ��"

�� ��� �
¼ 0:

ð5:33Þ

Table 2. Reduced matrix elements of the operators X̂��kq ee, 1A1ðe
0Þ

� �
.

� eh kX̂�0 ee, 1A1ðe
0Þ

� �
eik eh kX̂�1 ee, 1A1ðe

0Þ
� �

eik

A1 1
ffiffiffi
3
p

B1 �1 �
ffiffiffi
3
p

A2 1
ffiffiffi
3
p

B2 1
ffiffiffi
3
p
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For this reason, only the term with ms ¼ 0 contributes to a1. Then one can apply the

following relations:

3A2ðe
2Þ,ms ¼ 0

� ��ĉþ�� "j i ¼ 1ffiffiffi
2
p � �"j j þ ��"

�� ��� � ���� ��"
�� ��� �

¼
1ffiffiffi
2
p ,

3A2ðe
2Þ,ms ¼ 0

� ��ĉþ" ��
�� � ¼ 1ffiffiffi

2
p � �"j j þ ��"

�� ��� � ���� " ��
�� ��� �

¼
1ffiffiffi
2
p � �"j j þ ��"

�� ��� � ���� � ��"
�� ��� �

¼ �
1ffiffiffi
2
p :

ð5:34Þ

Using these relations, one finds that

"h jŶB211 ee, 3A2ðe
2Þ

� �
��
�� � ¼ � 1ffiffiffi

2
p "h jĉ ��

3A2ðe
2Þ,ms ¼ 0

�� �
3A2ðe

2Þ,ms ¼ 0
� ��ĉþ" ��

�� �

¼ �
1ffiffiffi
2
p 3A2ðe

2Þ,ms ¼ 0
� ��ĉþ�� "j i 3A2ðe

2Þ,ms ¼ 0
� ��ĉþ" ��

�� � ¼ 1

2
ffiffiffi
2
p :

ð5:35Þ

Then applying the Wigner–Eckart theorem and taking into account that E"jE� B2h i ¼ 1,

one finds that

"h jŶB211 ee, 3A2ðe
2Þ

� �
��
�� � ¼ � 1ffiffiffi

6
p eh kŶB21 ee, 3A2ðe

2Þ
� �

eik : ð5:36Þ

It follows from Equations. (5.35) and (5.36) that

eh kŶB21 ee, 3A2ðe
2Þ

� �
eik ¼ �

ffiffiffi
3
p
=2: ð5:37Þ

All reduced matrix elements of the operators Ŷ�� k q ee, ~s ~� e2
� �� �

, calculated as described

above, are given in Table 3.
Using the reduced matrix elements eh k X̂� k ½ ee,

1A1ðe
0Þ � e ik and

eh k Ŷ� k½ ee, ~s ~�ðe2Þ � e ik , we obtain the following expressions for the parameters of the

Hamiltonian:

F
ð0Þ
A1A1
¼

1

8" 1A1ðe2Þ½ �
þ

1

8" 1B1ðe2Þ½ �
þ

1

8" 1B2ðe2Þ½ �
þ

3

8" 3A2ðe2Þ½ �
,

F
ð0Þ
B1B1
¼

1

8" 1A1ðe2Þ½ �
þ

1

8" 1B1ðe2Þ½ �
�

1

8" 1B2ðe2Þ½ �
�

3

8" 3A2ðe2Þ½ �
,

F
ð0Þ
A2A2
¼

1

8" 1A1ðe2Þ½ �
�

1

8" 1B1ðe2Þ½ �
�

1

8" 1B2ðe2Þ½ �
þ

3

8" 3A2ðe2Þ½ �
,

F
ð0Þ
B2B2
¼

1

8" 1A1ðe2Þ½ �
�

1

8" 1B1ðe2Þ½ �
þ

1

8" 1B2ðe2Þ½ �
�

3

8" 3A2ðe2Þ½ �
,

F
ð1Þ
A1A1
¼ �

1

2" 1A1ðe2Þ½ �
�

1

2" 1B1ðe2Þ½ �
�

1

2" 1B2ðe2Þ½ �
þ

1

2" 3A2ðe2Þ½ �
,
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F
ð1Þ
B1B1
¼ �

1

2" 1A1ðe2Þ½ �
�

1

2" 1B1ðe2Þ½ �
þ

1

2" 1B2ðe2Þ½ �
�

1

2" 3A2ðe2Þ½ �
,

F
ð1Þ
A2A2
¼ �

1

2" 1A1ðe2Þ½ �
þ

1

2" 1B1ðe2Þ½ �
þ

1

2" 1B2ðe2Þ½ �
þ

1

2" 3A2ðe2Þ½ �
,

F
ð1Þ
B2B2
¼ �

1

2" 1A1ðe2Þ½ �
þ

1

2" 1B1ðe2Þ½ �
�

1

2" 1B2ðe2Þ½ �
�

1

2" 3A2ðe2Þ½ �
: ð5:38Þ

These expressions are directly related to the crystal field parameters through the
energies listed in Table 1. Now it is convenient to pass from the initial bicentre orbital basis
�A�B, �A"B, "A�B and "A"B, to the symmetry adapted orbital basis. Such symmetry-
adapted orbital basis and related terms of the2Eðe1Þ–2Eðe1Þ system are given in Table 4.
The true symmetry adapted wave-functions with S ¼ 1 and MS ¼ 1 are formally obtained
from the states given in Table 4 by replacing each product ’A  B (’, ¼ �, ") with the
Slater determinant j’A  Bj, whereas the states with S ¼ 0 are obtained using the
substitution ’A  B!ð1=

ffiffiffi
2
p
Þðj’A � Bj � j �’A  Bj Þ. In the symmetry-adapted basis con-

structed as the product of the symmetry-adapted orbital basis and spin basis S MSj i, the
matrix of the Hamiltonian, Equation (4.20), is diagonal, its eigenvalues are collected
in Table 5.

The spin-independent part of the exchange Hamiltonian R̂ 0 gives rise to four multiplets
degenerate with respect to the value of the total spin. The spin-dependent part R̂ 1 ŝAŝB
splits each multiplet into spin-singlet (S ¼ 0) and spin-triplet (S ¼ 1), this splitting obeys
the Lande’s rule. The overall energy pattern represents a result of the overlapping of
different Lande’s schemes and thus proves to be essentially non-Heisenberg. Figure 18
shows the energy pattern of the orbitally dependent exchange splittings calculated with
the values of the Racah parameters obtained for the free Ti(II) ion [148], namely

Table 3. Reduced matrix elements of the operators Ŷ��kq ee, ~s ~�ðe2Þ
� �

.

~s ~�(e2) � eh kŶ�0 ee, ~s ~�ðe2Þ
� �

eik eh k Ŷ� 1 e e, ~s ~� e2
� �� �

e ik

1A1 A1 �1/2 �
ffiffiffi
3
p
=2

B1 1/2
ffiffiffi
3
p
=2

A2 �1/2 �
ffiffiffi
3
p
=2

B2 �1/2 �
ffiffiffi
3
p
=2

1B1 A1 �1/2 �
ffiffiffi
3
p
=2

B1 1/2
ffiffiffi
3
p
=2

A2 1/2
ffiffiffi
3
p
=2

B2 1/2
ffiffiffi
3
p
=2

1B2 A1 �1/2 �
ffiffiffi
3
p
=2

B1 �1/2 �
ffiffiffi
3
p
=2

A2 1/2
ffiffiffi
3
p
=2

B2 �1/2 �
ffiffiffi
3
p
=2

3A2 A1 �3/2
ffiffiffi
3
p
=2

B1 �3/2
ffiffiffi
3
p
=2

A2 �3/2
ffiffiffi
3
p
=2

B2 3/2 �
ffiffiffi
3
p
=2
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A ¼ 141000 cm�1, B ¼ 900 cm�1, C ¼ 3300 cm�1 (these values are close to those found
in the cubic crystal field [100]). An independent evaluation of A can be made by comparing
the ionisation potentials for the configurations Ti(II)–Ti(III) (2:6525MJ=mol) and Ti(III)-
Ti(IV) (4:1746MJ=mol) [149]. This estimation gives A ¼ 15:03 eV that is close to the value
calculated for the free Ti(II) ion. Similar estimation can be obtained from the formula
A ¼ F0 � 49F4 with the Slater–Condon parameters expressed in terms of B and C
(the corresponding expressions are given in the book [100]) Note that the parameter A
plays the same role as the CT energy U in Anderson’s theory. We also set t� ¼ 4000 cm�1

that is within the Anderson’s estimation [84,85]). The multiplets ð3A2u,
1A1gÞ, ð

3B2u,
1B1gÞ

and 3B 1 u,
1B 2g are split antiferromagnetically whereas the multiplet 3A2g,

1A1u is split
ferromagnetically. It is seen that the ferromagnetic splitting of the multiplet 3A2g,

1A1u

is bigger as compared with the antiferromagnetic splittings of the remaining multiplets.
This result can be easily understood if one takes into account that only the ground and
CT states of the same symmetry are mixed by the electron transfer. Since all CT states are
even (symbol g is omitted in the notation of the CT states in Table 1), only the states 1A 1g,
1B 1g,

1B 2g and 3A 2g belonging to the ground manifold of the dimer are stabilised due
to the mixing with the CT states possessing the same spin and space symmetry, whereas
the odd states 3A 2u,

3B 2u,
3B 1 u and 1A 1u keep the same energy. Since the energy of the

spin-triplet CT state 3A 2g is lower than the energies of the spin-singlet CT states 1A 1g,
1B 1g,

1B 2g, the stabilisation of the 3A 2gstate is the strongest one and hence the overall
effect of the orbitally dependent exchange proves to be ferromagnetic (Figure 18).

Table 5. Eigenvalues of the exchange Hamiltonian,
Equation (4.8).

Terms Energies

3A2u,
1A1g �

2t2�
"½1A1ðe2Þ�

½2� SðSþ 1Þ�

3B2u,
1B1g �

2t2�
"½1B1ðe2Þ�

½2� SðSþ 1Þ�

3B1u,
1B2g �

2t2�
"½1B2ðe2Þ�

½2� SðSþ 1Þ�

3A2g,
1A1u �

2t2�
"½3A2ðe2Þ�

SðSþ 1Þ

Table 4. Symmetry adapted orbital basis and related terms
of the corner shared 2Eðe1Þ–2Eðe1Þ pair of D4h symmetry.

Terms Symmetry adapted orbital basis

3A2u,
1A1g ð1=

ffiffiffi
2
p
Þ �A�B þ "A"Bð Þ

3B2u,
1B1g ð1=

ffiffiffi
2
p
Þ �A�B � "A"Bð Þ

3B1u,
1B2g ð1=

ffiffiffi
2
p
Þ �A"B þ "A�Bð Þ

3A2g,
1A1u ð1=

ffiffiffi
2
p
Þ �A"B � "A�Bð Þ
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One can also demonstrate that the considered exchange interaction gives rise to a

considerable magnetic anisotropy. At this step, we will not discuss this point; the detailed

discussion of the magnetic anisotropy caused by the orbitally dependent exchange will be

given below.
The described direct way of the calculations of the parameters of the effective exchange

Hamiltonian does not involve any conceptual difficulties. Nevertheless, such calculations

can be sometimes rather lengthy, especially for the case of constituent metal ions con-

taining large number of unpaired electrons. For this reason, in [93] a more comprehensive

but also more complicated in its conceptual background approach to the calculation of the

parameters F
ðkÞ
��0 ð� � �Þ that is based on the use of Racah technique was developed. Here we

give only the final expressions that can be used for such evaluation, the procedure of the

derivation of these expressions can be found in [93].
The reduced matrix element of the operator X̂ can be evaluated as


isi�i X̂�k �i�
0
i, �
i �si ��i

� ���� ��� 
isi�i

D E
¼ ð�1Þ

�F
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2kþ 1Þð�Þ

p

�
si si k

1=2 1=2 �si

( )
W

�i �i �

�i �0i
��i

 !

isi�i ĉþ�i1=2

��� ��� �
i �si ��i

D E

isi�i ĉþ�0

i
1=2

��� ��� �
i �si ��i

D E
,

ð5:39Þ

and similar formula is valid for the reduced matrix element of Ŷ [93]. Here W
a b c
d e f

� 	
is the W-symbol [150] (the letters a, b, c, d, e, f stand for the irreducible representations),

and �F is the phase factor defined by the following symbolic equations:

�F ¼ Fð�i,�
0
i,�Þ þ Fð�i,�,�iÞ þ Fð ��i,�i,�iÞ þ Fð ��i,�

0
i,�iÞ þ�i þ �0i þ

��i þ �: ð5:40Þ

Figure 18. The energy pattern of the exchange splittings for the ½2Eðe1Þ�A � ½
2Eðe1Þ�B - exchange

problem (the values of the Racah parameters and transfer integral are explained in the text).
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The phase factors of the type ð�1ÞFða,b,cÞ are introduced to take into account the difference

in phases between the definition of the Clebsch–Gordan coefficients in the book by

Sugano et al. [100] that we use in this article and the definition of these coefficients given in

the book of Grifith [150]. For the point group O, the additional phase factors of the type

ð�1Þa are calculated using the following conventions: ð�1ÞA1 ¼ ð�1ÞE ¼ ð�1ÞT2 ¼ 1, and

ð�1ÞA2 ¼ ð�1ÞT1 ¼ �1.
Finally, the reduced matrix elements of the creation operator in Equation (5.39) can be

found with the aid of the relationship between these matrix elements and the coefficient

of fractional parentage [151]. This gives the following result:


isi�i ĉþ�i1=2

��� ��� �
i �si ��i

D E
¼ ð�1Þni

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nið2si þ 1Þð�iÞ

p
�
X
ki �ki


i j kih i �ki

��� �
i

D E
ðdni�1Þ �ki �si ��i,�i

���oðdniÞkisi�i

D E
:

ð5:41Þ

In Equation (5.41), the conventional notation � � �h jg� � �i is used for the coefficients of

fractional parentage [152].

5.3. Comparison with earlier approaches

Conceptually, the background of the described approach is close to those of Drillon and

Georges [124,125] and Leuenberger and Güdel [126]. However, there are at least two

significant differences. The first difference is in the mathematical procedure. In [124–126],

the T–P isomorphism was employed from the very beginning and the kinetic exchange

Hamiltonian was expressed in terms of the fictitious orbital angular momentum operators

and spin operators. This implies two restrictions, namely, only the orbital triplets (T1 or

T2) can be considered, and only the transfer pathways involving the electron jumps from t2
orbitals can be taken into account. On the contrary, in the present approach we start with

the strong crystal field scheme (with subsequent allowance of mixing of all configurations)

and express the effective Hamiltonian through the irreducible cubic tensors Ô i
� � and spin

operators. Also note that as distinguished from the approaches [124–126], the present

consideration exploits the tensorial properties of the fermionic operators and point

symmetry arguments. As a consequence, this approach is applicable to all electronic

configurations and terms of the constituent metal ions.
The second important difference is that the approach so far discussed takes into account

a complex multiplet structure (given by Tanabe–Sugano diagrams) of the energy patterns of

metal ions in their normal, oxidised and reduced forms. In fact, in [126] all the energies of the

CT states were set to the on-site repulsion energy U involved in the Hubbard Hamiltonian.

Although in [124,125] the energies of the CT states were considered to be dependent on the

spin, the difference between the energies of the CT states with the same spin was still

neglected. At the same time, the discrimination between the energies of different CT states is

sometimes important because it affects the mutual disposition of the spin levels arising from

the exchange splitting of the ground manifold and, particularly, it can change the spin

multiplicity of the ground state. Particularly, the importance of the accurate determination

of the multiplet structure of the CT states for the adequate description of the magnetic and

orbital ordering in the manganites has been pointed out in [153].
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To complete the discussion of the existing approaches, one should mention two

studies based on the similar ideas, namely the studies of Weihe and Güdel [90] and
Ceulemans et al. [127–129]. In [90], the kinetic exchange in �-oxo–bridged dimeric

complexes of D4h symmetry was considered and a direct calculation of the energy pattern
was performed by means of the second-order perturbation procedure without using of the

effective Hamiltonian. A second-order kinetic exchange Hamiltonian acting within the
ground manifold of the pair was deduced in [127–129] and applied to the Ti2Cl9½ �

3� dimer.

However, in its final form this Hamiltonian still contains the one-electron fermionic

operators acting on the spin–orbitals rather than the many-electron orbital and spin
operators, and hence it cannot be regarded as an effective Hamiltonian to the full extent.

In fact, according to the conventional definition of the effective Hamiltonian, the last
should not only operate within the restricted basis but also should be expressed in terms

of the many-electron operators acting within the space specified by the total quantum
numbers of the constituents. From this point of view, the Hamiltonian, Equation (5.18),

does represent a genuine effective exchange Hamiltonian because it contains only the
many-electron orbital and spin operators of the interacting metal ions. To clarify this

statement, let us use the analogy with the HDVV spin-Hamiltonian and compare two
possible forms of this Hamiltonian. The first form of the HDVV Hamiltonian represents

the sum of bi-orbital contributions, namely, Ĥex ¼ �2
P

�	 JA�,B	ŝA�ŝB	 (i), where � and 	
enumerate the magnetic orbitals, and JA�,B	 are the biorbital exchange parameters.
The second form is the conventional HDVV Hamiltonian, i.e. Ĥex ¼ �2 J ŝAŝB (ii), where

J ¼ nAnBð Þ
�1 P

� 	 JA�,B	 is the many-electron exchange parameter (nA and nB are the
numbers of the magnetic orbitals). The Hamiltonian (i) explicitly contains all exchange

pathways and one-electron operators, while the Hamiltonian (ii) is expressed in terms of
the full spin operators ŝA, ŝB, and contains the only many-electron exchange parameter J.

Although these two forms of the exchange Hamiltonian are equivalent, only the second
one can be useful for the parametrisation of the experimental data and has an irrefutable

advantage as a computational tool.

5.4. Orbitally dependent exchange Hamiltonian in terms of spherical irreducible
tensor operators

To simplify the evaluation of the energy pattern and eigen-functions of the orbitally
dependent Hamiltonian, the orbital and spin operators can be expressed in terms of the

ITOs of R3 group. The ITO approach based on full symmetry group R3 is well known as
the most efficient computational tool for the evaluation of the energy levels and physical

properties of high-nuclearity spin-clusters [4]. Now we will demonstrate that the ITO
technique based on R3 group can be extended to a more general case of degenerate

systems. The corresponding approach developed in [94] enables one to benefit from the
powerful angular momentum technique and gives a more convenient way to classify the

states of the degenerate system by assigning the orbital angular momenta quantum

numbers (along with the spin quantum numbers) to the eigenvectors of the effective
Hamiltonian. This significantly facilitates also the analysis of the magnetic anisotropy.

It is worthwhile to illustrate the main idea by taking a corner-shared bioctahedral system
of D4h symmetry (Figure 19) as an example and assuming the 2Sþ1T2 or 2Sþ1T1 ground
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terms of the metal ions. Then (in Section 6.1) the magnetic properties of this system will be

discussed with the special emphasis on the magnetic anisotropy.
Let us use the conventional notations for the cubic basis [100]: � / yz, 
 / xz,

� / xy (T2-basis), u / 3z2 � r2, v /
ffiffiffi
3
p
ðx2 � y2Þ (E-basis), and � / L̂x, 	 / L̂y, � / L̂z

(T1-basis). Figure 19 shows that the main contributions to the kinetic exchange arise from

the transfer processes �A $ �B, 
A $ 
B (�-transfer) and uA $ uB (�-transfer). The

corresponding transfer integrals will be denoted as follows:

t�� ¼ t

 � t�, tuu � t�: ð5:42Þ

Figure 19. The most efficient transfer pathways in a corner-shared bioctahedron: (a) � � �, (b) 
� 

and (c) u� u.
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The consideration will be restricted by the trivalent metal ions possessing ground orbital

triplets arising from the tn2 configurations (e.g. Ti(III) ions (2T2ðt
1
2Þ), the low-spin Mn(III)

ions (3T1ðt
4
2 Þ), etc.). Since the cubic crystal field for these ions is strong, one can expect that

these terms arise mainly from tn2 and neglect the admixture of the states arising from tn�m2 em

configurations. In this case �-transfer is excluded because the e-orbitals are unoccupied in

the ground state. Retaining only the terms proportional to t2��, t
2


 and t��t

 in Equation

(5.18), one can present the kinetic exchange Hamiltonian acting within the ground

½2sþ1� tn2
� �
�A � ½

2sþ1� tn2
� �
�B manifold (� ¼ T1,T2) in the same form as that in Equation

(5.20), with the orbital operators R̂ k being the following:

R̂k ¼ �ð2=3Þt
2
� 2F

ðkÞ
A1A1

h
ÔA

A1
ÔB

A1
þ F

ðkÞ
EE ÔA

EuÔ
B
Eu þ 3ÔA

EvÔ
B
Ev

� 

�

ffiffiffi
2
p

F
ðkÞ
A1E

ÔA
A1
ÔB

Eu þ ÔA
EuÔ

B
A1

� 

þ 3F

ðkÞ
T1T1

ÔA
T1�

ÔB
T1�
þ 3F

ðkÞ
T2T2

ÔA
T2�

ÔB
T2�

i
:

ð5:43Þ

In Equation (5.43), the short notations F
ðkÞ
��0 � F

ðkÞ
� �0 ðt2, t2, t2, t2Þ are introduced. The

matrices Ô�� defined in the cubic T2ðT1Þ basis are given in Table 6. If the symmetry

of the ligand surroundings of the constituent metal ions is lower than the cubic one, the

Hamiltonian of the system also contains the terms of the low-symmetry (non-cubic)

components of the crystal field, which splits the ground cubic orbital triplet. The one-

centre operator of the low-symmetry crystal field can be written as

Ĥi
cr ¼ D l̂2zi �

1

3
l lþ 1ð Þ


 �
þ D0 l̂ 2xi � l̂ 2yi

� 

¼ �

2

3
DÔi

Eu þ
2ffiffiffi
3
p D0Ôi

Ev, ð5:44Þ

Table 6. Orbital matrices Ô� � with � ¼ A1, Eð� ¼ u, vÞ, T1ð� ¼ �,	, �Þ and T2ð� ¼ �, 
, �Þ defined
with the cubic T2 (upper signs) and T1 (lower signs) bases.

ÔA 1
ÔEu ÔE v

1 0 0
0 1 0
0 0 1

0
@

1
A �1=2 0 0

0 �1=2 0
0 0 1

0
@

1
A

ffiffiffi
3
p
=2 0 0
0 �

ffiffiffi
3
p
=2 0

0 0 0

0
@

1
A

ÔT1 � ÔT1 	 ÔT1 �

0 0 0
0 0 	1=

ffiffiffi
2
p

0 �1=
ffiffiffi
2
p

0

0
@

1
A 0 0 �1=

ffiffiffi
2
p

0 0 0
	1=

ffiffiffi
2
p

0 0

0
@

1
A 0 	1=

ffiffiffi
2
p

0
�1=

ffiffiffi
2
p

0 0
0 0 0

0
@

1
A

ÔT2 � ÔT2 
 ÔT2 �

0 0 0
0 0 1=

ffiffiffi
2
p

0 1=
ffiffiffi
2
p

0

0
@

1
A 0 0 1=

ffiffiffi
2
p

0 0 0
1=

ffiffiffi
2
p

0 0

0
@

1
A 0 1=

ffiffiffi
2
p

0
1=

ffiffiffi
2
p

0 0
0 0 0

0
@

1
A
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where the parameters describing the axial and rhombic distortions are assumed to be equal

for both ions. Then for the pair of metal ions, one can write

Ĥcr ¼ �
2

3
D ÔA

A1
ÔB

Eu þ ÔA
EuÔ

B
A1

� 

þ

2ffiffiffi
3
p D0 ÔA

A1
ÔB

Ev þ ÔA
EvÔ

B
A1

� 

: ð5:45Þ

Now we can find the relationship between the matrices Ô�� and the matrices l̂x, l̂y, l̂z
defined in the p-basis. The possibility to use l̂x, l̂y, l̂z defined in p-basis (instead of T2 or T1)

is due to the T–P isomorphism that in the case of pure tn2 configuration is described by the

symbolic equation

l̂ðPÞ ¼ �l̂ðT1 orT2Þ: ð5:46Þ

For the sake of definiteness we will consider the ground term 2sþ1T2. In the point group O

the operators l̂x, l̂y, l̂z form the basis of T1, and the matrices ÔT1� are related to l̂x, l̂y, l̂z
as follows:

ÔT1� ¼ ði=
ffiffiffi
2
p
Þl̂x, ÔT1	 ¼ ði=

ffiffiffi
2
p
Þl̂y, ÔT1� ¼ ði=

ffiffiffi
2
p
Þl̂z: ð5:47Þ

The matrices ÔE� and ÔT2� can also be expressed in terms of the components l̂x, l̂y, l̂z
using the relation (T2 and E are contained in the direct product T1 � T1)

Ô�� ¼ K�

X
�1�2

T1�1T1�2
�� ��

� �
ÔT1�1ÔT1�2 , ð5:48Þ

where the factors K� are calculated by means of comparing the corresponding bilinear

forms with the matrices Ô� � . Applying this procedure, one finds that

E

ÔEu ¼ � 3=2ð Þ l̂ 2z � ð1=3Þl ðlþ 1Þ
h i

,

ÔEv ¼ �ð
ffiffiffi
3
p
=2Þ l̂2x � l̂2y

� 

:

8>><
>>:

T2

ÔT2� ¼ �ð1=
ffiffiffi
2
p
Þ l̂yl̂z þ l̂zl̂y

� 

,

ÔT2
 ¼ �ð1=
ffiffiffi
2
p
Þ l̂xl̂z þ l̂zl̂x

� 

,

ÔT2� ¼ �ð1=
ffiffiffi
2
p
Þ l̂xl̂y þ l̂yl̂x

� 

:

8>>>>>>><
>>>>>>>:

ð5:49Þ

At the next step, one can express l̂x, l̂y, l̂z in terms of the cyclic components

l̂1q q ¼ 0, 	1ð Þ. Then, the bilinear forms l̂x, l̂y, etc., are expressed through the irreducible

tensor products by means of the inverse Clebsch–Gordan transformation [141]:

l̂1q1 l̂1q2 ¼
X
nq

C
nq
1q11q2

T̂nq, l̂1 � l̂1

n o
nq
� T̂nq: ð5:50Þ
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In order to unify the notations we also denote l̂1q1 � T̂1q: By combining these results,

we arrive at the following expressions for the cubic ITOs Ô�� in terms of spherical ITOs T̂nq:

ÔA1
¼ T̂00,

ÔEu ¼ �
ffiffiffiffiffiffiffiffi
3=2

p
T̂20,

ÔEv ¼ �ð
ffiffiffi
3
p
=2Þ T̂22 þ T̂2�2

� 

,

ÔT1� ¼ �ði=2Þ T̂11 � T̂1�1

� 

, ÔT1	 ¼ �ð1=2Þ T̂11 þ T̂1�1

� 

, ÔT1� ¼ ði=

ffiffiffi
2
p
Þ T̂10,

ÔT2� ¼ �ði=
ffiffiffi
2
p
Þ T̂21 þ T̂2�1

� 

, ÔT2
 ¼ ð1=

ffiffiffi
2
p
Þ T̂21 � T̂2�1

� 

, ÔT2� ¼ ði=

ffiffiffi
2
p
Þ T̂22 � T̂2�2

� 

:

ð5:51Þ

The orbital operators ÔA
� � and ÔB

� � are defined in the local frames xAyAzA and xByBzB.

In the D 4h case they are collinear, and hence the orbital operators defined in these frames

retain their forms also in the molecular coordinate frame XYZ that is collinear to the local

ones (Z||C4). In this case, one can pass to the site-coupled representation using again the

relation between the direct product of the spherical ITOs and the irreducible tensor

products [141]

T̂A
nqT̂

B
n0q0 ¼

X
br

Cbr
nqn0q0 T̂A

n � T̂B
n0

n o
br
: ð5:52Þ

These equations allow us to express all products ÔA
��Ô

B
�0� 0 in terms of the irreducible

tensor products fT̂A
k � T̂B

n gbr [93]. The results are collected in Table 7. Finally, according to

a general rule [141], the scalar product ŝAŝB should be replaced with �
ffiffiffi
3
p

ŝA1 � ŝB1
� �

00
.

Along with the exchange interaction and low-symmetry crystal field contribution, the

full Hamiltonian of the cluster should also include SO and Zeeman interactions. The

corresponding expressions for the 2sþ1T2 tn2
� �
� 2sþ1T2 tn2

� �
pair in terms of spherical ITOs

are the following:

ĤSO ¼ ���
X
q

ð�1Þq T̂A
1qŝ

A
1�q þ T̂B

1qŝ
B
1�q

� 

, ð5:53Þ

ĤZ ¼ 	
X
q

ð�1Þq �� T̂A
1q þ T̂B

1q

� 

þ ge ŝA1q þ ŝB1qÞ

�h i
H1�q ð5:54Þ

SO coupling �4 0 for tn2 configurations with n 
 3, and �5 0 when n4 3, the Zeeman

term contains both spin and orbital parts. Using the results listed in Table 7 and

Equations (5.53) and (5.54), one can present the full effective Hamiltonian, including

both orbitally dependent exchange and one-centre interactions (low-symmetry crystal

field, SO coupling and Zeeman interaction) in the following general form:

ĤefðA,BÞ ¼
X
n,n0

X
b,r

X
k,k0

X
d,�

Gb,r,d,� n, n0, k, k0ð Þ T̂A
n � T̂B

n0

n o
br

ŝAk � ŝBk0
� �

d,��
, ð5:55Þ

where the coefficients Gb,r,d,� n, n0, k, k0ð Þ are the functions of the parameters F
ðkÞ
��0 , �, �, D and

D0: The expressions of the non-zero coefficients Gb,r,d,�ðn, n
0, k, k0Þ are collected in Table 8.

As a basis, one can use the wave-functions lAlBsAsBLSMLMSj i in which the single-ion

fictitious orbital angular momenta lA ¼ lB ¼ 1 are coupled to give the total orbital angular

momentum L of the dimer (L ¼ 0, 1, 2), and the local spins sA and sB are coupled to give
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Table 8. Non-zero coefficients Gb, r, d, � n, n0, k, k0ð Þ.

Gb,r,d,�ðn, n
0, k, k0Þ Expression

G0,0,0,0ð0, 0, k, kÞ �ð4=3Þt2�F
ðkÞ
A1A1

G0,0,0,0ð2, 2, k, kÞ �ð2=
ffiffiffi
5
p
Þt2� 2F

ðkÞ
EE þ F

ðkÞ
T2T2

h i
G2,0,0,0ð2, 2, k, kÞ �ð4=

ffiffiffiffiffi
14
p
Þt2� FðkÞEE þ FðkÞT2T2

h i
G4,0,0,0ð2, 2, k, kÞ �ð1=

ffiffiffiffiffi
70
p
Þt2� 9F

ðkÞ
EE þ 2F

ðkÞ
T2T2

h i
G4,	4,0,0ð2, 2, k, kÞ �ð1=2Þt2� 3F

ðkÞ
EE � 2F

ðkÞ
T2T2

h i
G0,0,0,0ð1, 1, k, kÞ �ð1=

ffiffiffi
3
p
Þt2�F

ðkÞ
T1T1

G2,0,0,0ð1, 1, k, kÞ ð2=
ffiffiffi
6
p
Þt2�F

ðkÞ
T1T1

G2,0,0,0ð0, 2, k, kÞ ¼ G2,0,0,0ð2, 0, k, kÞ �ð2=
ffiffiffi
3
p
Þt2�F

ðkÞ
A1E
þ ð1� kÞ

ffiffiffiffiffiffiffiffi
2=3
p

D

G2,	2,0,0ð0, 2, 0, 0Þ �D0

G1,0,1,0ð1, 0, 1, 0Þ �� �

G1,	1,1,	1ð1, 0, 1, 0Þ � �

G1,0,0,0ð1, 0, 0, 0Þ ��	H10

G1,	1,0,0ð1, 0, 0, 0Þ �	H1�1

G0,0,1,0ð0, 0, 1, 0Þ ge	H10

G0,0,1,	1ð0, 0, 1, 0Þ �ge	H1�1

Table 7. Relations between the direct products ÔA
��Ô

B
�0� 0 defined in cubic basis and irreducible

tensor products
�
T̂A
k � T̂B

n

�
br
.

ÔA
��Ô

B
�0� 0 Expression in terms of T̂A

k � T̂B
n

n o
br

ÔA
A1
ÔB

A1
T̂A
0 � T̂B

0

n o
00

ÔA
EuÔ

B
Eu ð3=

ffiffiffiffiffi
20
p
Þ T̂A

2 � T̂B
2

n o
00
�ð3=

ffiffiffiffiffi
14
p
Þ T̂A

2 � T̂B
2

n o
20
þð9=

ffiffiffiffiffi
70
p
Þ T̂A

2 � T̂B
2

n o
40

ÔA
EvÔ

B
Ev ð3=

ffiffiffiffiffi
20
p
Þ T̂A

2 � T̂B
2

n o
00
þð3=

ffiffiffiffiffi
14
p
Þ T̂A

2 � T̂B
2

n o
20
þð3=

ffiffiffiffiffiffiffiffi
280
p

Þ T̂A
2 � T̂B

2

n o
40

þ ð3=4Þ T̂A
2 � T̂B

2

n o
44
þð3=4Þ T̂A

2 � T̂B
2

n o
4�4

ÔA
A1
ÔB

Eu þ ÔA
EuÔ

B
A1

�
ffiffiffiffiffiffiffiffi
3=2
p

T̂A
0 � T̂B

2

n o
20
þ T̂A

2 � T̂B
0

n o
20

h i
ÔA

T1�
ÔB

T1�
ð1=

ffiffiffiffiffi
12
p
Þ T̂A

1 � T̂B
1

n o
00
�ð1=

ffiffiffi
6
p
Þ T̂A

1 � T̂B
1

n o
20

ÔA
T2�

ÔB
T2�

ð1=
ffiffiffi
5
p
Þ T̂A

2 � T̂B
2

n o
00
þ

ffiffiffiffiffiffiffiffi
2=7

p
T̂A
2 � T̂B

2

n o
20
þð1=

ffiffiffiffiffi
70
p
Þ T̂A

2 � T̂B
2

n o
40

�ð1=2Þ T̂A
2 � T̂B

2

n o
44
�ð1=2Þ T̂A

2 � T̂B
2

n o
4�4

ÔA
A1
ÔB

Ev þ ÔA
EvÔ

B
A1

�
ffiffi
3
p

2 T̂A
0 � T̂B

2

n o
22
þ T̂A

0 � T̂B
2

n o
2�2
þ T̂A

2 � T̂B
0

n o
22
þ T̂A

2 � T̂B
0

n o
2�2

h i
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the total spin S. This basis corresponds to the Russel–Saunders scheme for dimer. Then

using the ITO technique, one can obtain the following formula for the matrix elements

of the Hamiltonian:

lAlBsAsBL
0S0M0LM

0
S

� ��Ĥef A,Bð Þ lAlBsAsBLSMLMSj i

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Lþ 1Þð2Sþ 1Þ

p X
n,n0

X
b,r

X
k,k0

X
d,�

Gb,r,d,�ðn, n
0, k, k0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2bþ 1Þð2dþ 1Þ

p

�

n n0 b

1 1 L0

1 1 L

8><
>:

9>=
>;

k k0 d

sA sB S0

sA sB S

8><
>:

9>=
>; 1h T̂A

n

��� ���1i 1h T̂B
n0

��� ���1i sAh ŝAk
�� ��sAi

� sBh ŝBk0
�� ��sBiCL0M0L

LMLbr
C

S0M0
S

SMSd��
,

ð5:56Þ

where the orbital and spin one-centre reduced matrix elements are calculated as

1h T̂ f
0

��� ���1i ¼ ffiffiffi
3
p

, 1h T̂ f
1

��� ���1i ¼ ffiffiffi
6
p

, 1h T̂ f
2

��� ���1i ¼ ffiffiffi
5
p

,

sf
�

ŝ f0

��� ���sf� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2sf þ 1

p
, sf

�
ŝ f1

��� ���sf� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sf ðsf þ 1Þð2sf þ 1Þ

p
:

ð5:57Þ

6. Orbitally dependent exchange: applications, magnetic anisotropy

6.1. Corner-shared bioctahedral 2T2ðt
1
2Þ �

2T2ðt
1
2Þ cluster

Let us apply the so far described approach to a simplest corner-shared bioctahedral cluster

of D4h symmetry formed by two one-electron centers, this system can be referred to as
2T2ðt

1
2Þ �

2T2ðt
1
2Þ pair. In this case, the CT states represent the products of the oxidised

vacuum state (term 1A 1 arising from the t02-configuration) and the following reduced
~s ~� states belonging to d2 configuration: 3T1ðt

2
2, t2eÞ,

1A1ðt
2
2, e

2Þ, 1Eðt22, e
2Þ and 1T2ðt

2
2, t2eÞ.

One can see that only these CT states are mixed with the ground one by means of the

electron hopping of t2! t2 type. In fact, considering, for example, the reduced state
3T2ðt2eÞ, one can see that this state can be obtained from the ground t12 � t12 configuration

only via the transfer of t2! e type, which is forbidden in the case of the overall D4h

symmetry.
Since each ~s ~� state is the result of the mixing of only two electronic configurations,

the corresponding wave-functions can be found analytically by considering the 2� 2

matrices of intra-centre Coulomb interaction (see the book by Sugano et al. [100]).

Then the parameters F
kð Þ

� �0 involved in the exchange Hamiltonian can be presented as

follows:

F
ðkÞ
��0 ¼ 2

X
~s ~�

N
ðkÞ
��0 ð~s

~�Þ
cos2 �ð~s ~�Þ

� �
"1ð~s ~�Þ

(
þ
sin2½�ð~s ~�Þ�

"2ð~s ~�Þ

)
, ð6:1Þ

where N
ðkÞ
��0 ð~s

~�Þ are the numerical factors, which are calculated following the procedure

described in Section 5. The angles �ð~s ~�Þ defining the mixing of the repeating ~s ~� terms are
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calculated as follows:

tan 2� 3T1

� �� �
¼

12B

10Dqþ 9B
, tan 2� 1A1

� �� �
¼

2
ffiffiffi
6
p

2Bþ Cð Þ

20Dq� 2B� C
,

tan 2�ð1EÞ
� �

¼ �
4
ffiffiffi
3
p

B

20Dq� B
, tan 2� 1T2

� �� �
¼

4
ffiffiffi
3
p

B

10Dq� B
:

ð6:2Þ

The energies " ~
ð~s ~�Þ of the CT states are counted from the energy of the pair of the non-
interacting 2T2ðt

1
2Þ ions, and their expressions in terms of the Racah parameters A, B, C

and parameter Dq are given in [100].
First, let us analyse the eigenvalues of the exchange Hamiltonian defined by Equation

(5.20), leaving outside all other interactions. One can find these eigenvalues by using the
symmetry-adapted basis constructed from the initial orbital basis �A�B, �A
B, �A�B, 
A�B,

A
B, 
A�B, �A�B, �A
B and �A�B. The symmetry-adapted orbital basis and related terms
of the 2T2ðt

1
2Þ �

2T2ðt
1
2Þ system are collected in Table 9. In the effective symmetry-adapted

basis (the product of the symmetry adapted orbital basis and spin basis SMSj i), the matrix
of the exchange Hamiltonian is diagonal, its eigenvalues are collected in Table 10.
Note that the symmetry-adapted orbital basis and the eigenvalues are valid not only for
2T2ðt

1
2Þ �

2T2ðt
1
2Þ pair but also for an arbitrary 2sþ1T2ðt

n
2Þ �

2sþ1T2ðt
n
2Þ pair of D4h symmetry.

For the numerical evaluation of the energy pattern, we use the same values for the
Racah parameters and a transfer integral as in the above consideration. The cybic field
parameter Dq is set to 1000 cm�1, that is, a typical value for divalent metal ions [100]. The
energy pattern of 2T2ðt

1
2Þ �

2T2ðt
1
2Þ pair calculated with this set of parameters is shown

in Figure 20, where the irreducible representations of D4h and the labels LSMLMSj i �

S,LMLj i obtained with the aid of spherical ITO approach are indicated. The spin-
independent part of the kinetic exchange Hamiltonian splits the ground 2T2ðt

1
2Þ�

2T2ðt
1
2Þ

manifold of the pair into six levels (Figure 20a). These levels undergo further splitting
under the action of spin-dependent part of the Hamiltonian (Figure 20b). These splittings
are defined by the parameters J1, J2 , . . . , J6 collected in Table 11. The scheme of the energy
levels consists of six superimposed groups of levels, and the energy levels within each group
obey the Lande’s rule. At the same time, the whole energy pattern does not obey this rule,
that is, this pattern is essentially non-Heisenberg. The levels 3A2g ,

1A1u and
1,3Eg,

1,3Eu are
split in a ferromagnetic fashion, meanwhile all other levels are split antiferromagnetically.

Table 9. Symmetry-adapted orbital basis and related terms
of the corner-shared 2T2ðt

1
2Þ–

2T2ðt
1
2Þ pair of D4h symmetry.

Terms Symmetry-adapted orbital basis

3A2u,
1A1g �A�B

3A2u,
1A1g ð1=

ffiffiffi
2
p
Þð�A�B þ 
A
BÞ

3B2u,
1B1g ð1=

ffiffiffi
2
p
Þð�A�B � 
A
BÞ

3A2g,
1A1u ð1=

ffiffiffi
2
p
Þð�A
B � 
A�BÞ

3B1u,
1B2g ð1=

ffiffiffi
2
p
Þð�A
B þ 
A�BÞ

3Eg,
1Eu ð1=

ffiffiffi
2
p
Þð
A�B � �A
BÞ, ð1=

ffiffiffi
2
p
Þ �A�B � �A�Bð Þ

3Eu,
1Eg ð1=

ffiffiffi
2
p
Þð
A�B þ �A
BÞ, ð1=

ffiffiffi
2
p
Þð�A�B þ �A�BÞ
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The ferromagnetic splitting of the ground level 3A2g,
1A1u is strong (the corresponding

parameter J3 � 235cm�1) because J3 contains only strong ferromagnetic contribution

associated with the spin-triplet 3T1 state in the CT spectrum. For this reason, the overall

effect of the kinetic exchange is the stabilisation of the ferromagnetic ground state 3A2g.

Figure 20. The pattern of the exchange splittings for the D4h cluster: (a) spin-independent splittings
and (b) full splittings.

Table 10. Eigenvalues of the exchange Hamiltonian for the 2sþ1T2ðt
n
2
Þ�2sþ1T2ðt

n
2
Þ pair of D4h

symmetry.

Terms Energies

3A2u,
1A1g �ð2=3Þt2�

P
k¼0,1

2F
ðkÞ
A1A1
þ F

ðkÞ
EE � 2

ffiffiffi
2
p

F
ðkÞ
A1E

h i
Pkðs

g,S Þ

3A2u,
1A1g �ð2=3Þt2�

P
k¼0,1

2F ðkÞA1A1

h
þ ð5=2ÞF ðkÞEE þ

ffiffiffi
2
p

F ðkÞA1E
þ ð3=2ÞF ðkÞT1T1

þ ð3=2ÞF ðkÞT2T2

i
Pkðs

g,S Þ

3B2u,
1B1g �ð2=3Þt2�

P
k¼0,1

2F
ðkÞ
A1A1

h
þ ð5=2ÞF ðkÞEE þ

ffiffiffi
2
p

F
ðkÞ
A1E
� ð3=2ÞF ðkÞT1T1

� ð3=2ÞF ðkÞT2T2

i
Pkðs

g,S Þ

3A2g,
1A1u �ð2=3Þt2�

P
k¼0,1

2F ðkÞA1A1

h
� 2F ðkÞEE þ

ffiffiffi
2
p

F ðkÞA1E
þ ð3=2ÞF ðkÞT 1T 1

� ð3=2ÞF ðkÞT2T2

i
Pkðs

g,S Þ

3B1u,
1B2g �ð2=3Þt2�

P
k¼0,1

2F
ðkÞ
A1A1

h
� 2F

ðkÞ
EE þ

ffiffiffi
2
p

F
ðkÞ
A1E
� ð3=2ÞF ðkÞT1T1

þ ð3=2ÞF ðkÞT2T2

i
Pkðs

g,S Þ

3Eg,
1Eu,

3Eu,
1Eg �ð2=3Þt2�

P
k¼0,1

2F ðkÞA1A1
� ð1=2ÞF ðkÞEE � ð1=

ffiffiffi
2
p
ÞF ðkÞA1E

h i
Pkðs

g,S Þ

Note: The functions Pkðs
g,S Þ are the following: P0ðs

g,S Þ ¼ 1, and P1ðs
g,S Þ ¼ ð1=2Þ S Sþ 1ð Þ �½

2sgðsg þ 1Þ�.
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At the same time, the splitting of the first excited level 1,3Eg,
1,3Eu is weak (J3 � 5 cm�1)

due to the competition of ferromagnetic (coming from 3T1 states in the CT spectrum) and
antiferromagnetic (coming from 1T2 states in the CT spectrum) contributions. The highest
level 3A2u,

1A1g remains unsplit (J6 ¼ 0). All other levels undergo strong antiferromagnetic
splittings (J1 � J2 � J4 � �216 cm

�1) arising from the uncompensated contributions of
different CT spin singlets. It is remarkable that all spin triplets arising from the
antiferromagnetically split levels coincide with the highest unsplit level 3A2u,

1A1g.
The above consideration shows that, in the case of orbitally degenerate ions, one

cannot predict (with exception of some special particular situations) the spin of the ground
state using only the Goodenough and Kanamori rules [86]. In fact, in the case of orbital
degeneracy, both ferromagnetic and antiferromagnetic one-electron transfer processes
are operative so that the microscopic calculation of the energy levels becomes inevitable
for the elucidation of the overall effect of the exchange interaction.

The ground 3A2g state with L ¼ 1 and ML ¼ 0 does not contribute to the orbital
part of the magnetic susceptibility in a parallel field (HjjC4), so that�orbjj ¼ 0 in the low-
temperature limit (since all S,LMLj i states are the eigenvectors of L̂Z, the TIP does not
appear in a parallel field). The first-order orbital contribution in a perpendicular field is
also vanishing. At the same time, the second-order contribution to �orb? (TIP) is non-zero.
As a result, weak magnetic anisotropy with �jj5�? can be expected at low temperatures.

The matrix elements h1B2gð
1B1gÞjL̂Zj

1B2gð
1B1gÞi vanish as well as the matrix elements

connecting 1B2g and 1B1g with the rest of states. Nevertheless, the states 1B2g and
1B1g contribute to �orbjj , and this contribution appears in the first order of perturbation
theory because h1B2gjL̂Zj

1B1gi 6¼ 0 and the gap between 1B2g and 1B1g is rather small
(�0.02 cm�1). The proximity of these two levels takes place due to the fact that the CT
states, 1E and 1T2, are almost degenerate (see Tanabe–Sugano diagram for d2 ion [100]).
On the contrary, �orb? appears only as a second-order effect. Therefore, the orbital
contribution of the states 1B2g and 1B1g to the overall magnetic susceptibility is strongly
anisotropic with �orbjj (1B2g,

1B1g) 44�orb? (1B2g,
1B1g).

To illustrate the peculiarities of the magnetic susceptibility arising from the orbital
contributions to the magnetic exchange, we have plotted the �orbjj versus T and �orb? versus T

Table 11. Parameters defining the spin-dependent splittings of the energy levels (eigenvalues of the
spin-independent part of the exchange Hamiltonian) of the bioctahedral 2T2ðt

1
2Þ–

2T2ðt
1
2Þ cluster of

D4h symmetry.

Level Parameter Expression

3B2u,
1B1g J1 �2t2�

cos2½�ð1E Þ�
"1ð1E Þ

n
þ

sin2 ½�ð1E Þ�
"2ð1E Þ

o
3A2u,

1A1g J2 �ð2t2�=3Þ
2 cos2 � 1A1ð Þ½ �

"1 1A1ð Þ

n
þ

2 sin2 � 1A1ð Þ½ �
"2 1A1ð Þ

þ
cos2 ½�ð1E Þ�
"1ð1E Þ

þ
cos2½�ð1E Þ�
"2ð1E Þ

o
3A2g,

1A1u J3 2t2�
cos2 � 3T1ð Þ½ �
"1 3T1ð Þ

n
þ

sin2 � 3T1ð Þ½ �
"2 3T1ð Þ

o
3B1u,

1B2g J4 �2t2�
cos2 � 1T2ð Þ½ �
"1 1T2ð Þ

n
þ

sin2 � 1T2ð Þ½ �
"2 1T2ð Þ

o
1,3Eg,

1,3Eu J5 ðt2�=2Þ
cos2 � 3T1ð Þ½ �
"1 3T1ð Þ

n
þ

sin2 � 3T1ð Þ½ �
"2 3T1ð Þ

�
cos2 � 1T2ð Þ½ �
"1 1T2ð Þ

�
cos2 � 1T2ð Þ½ �
"1 1T2ð Þ

o
3A2u,

1A1g J6 0
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dependences in which only the orbital part of Zeeman interaction is taken into account
(Figure 21). One can see that �orb? is almost temperature independent. On the contrary,
�orbjj ¼ 0 in the low-temperature limit is in conformity with the above qualitative
consideration. Then, �orbjj rapidly increases with the increase of the temperature and
reaches a pronounced maximum at T � 50K. This kind of behaviour is evidently explained
by the population of the levels 1B2g and 1B1g. Summarising, one can conclude that the
exchange Hamiltonian for a corner-shared 2T2ðt2Þ �

2T2ðt2Þ pair is fully anisotropic in the
sense that �orbjj appears as the effect of the first order, meanwhile �orb? is a second-order effect.

In the above discussion, it is assumed that the ligand surroundings of the metal ions
represent a perfect octahedzon (D ¼ 0). Now, let us briefly discuss the case of tetragonally
distorted surroundings of the metal ions. Figure 22 shows the energy levels of the pair as the
functions of the parameter D, provided that D4 0. The increase of D transforms the ground
spin-triplet state 1, 10j i formed by the exchange interaction into the paramagnetic mixture
of two states, with one being the spin-singlet and another one being the spin triplet. These
two states originate from the orbital state �A �B corresponding to the terms 3A2u,

1A1g of the
undistorted system (Table 9). Since the weak �A $ �B transfer is neglected, the exchange
interaction does not operate within the ground manifold. Both states forming the ground
manifold possessML ¼ 0, so the first-order contributions to �orbjj and �orb? vanish as well as
the second-order contribution to �orbjj . The second-order contribution to �orb? is non-zero,
this contribution decreases with the increase of D. Therefore, one arrives at the conclusion
that at low temperatures �?4�jj. This means that the low-symmetry crystal field is able to
reverse the sign of the magnetic anisotropy produced by the exchange interaction. This
conclusion is illustrated by Figure 23 showing the orbital part of the magnetic susceptibility
for D ¼ 150 cm�1. At low temperature, one obtains the TIP contribution �orb? , meanwhile
�orbjj tends to 0 when T! 0. The increase of �orbjj with the temperature is due to the
population of the levels with ML ¼ 	1 and ML ¼ 	2 that are close to the ground level at
D ¼ 150 cm�1 (Figure 22). On the other hand, the depopulation of the ground level results in
the decrease of �orb? when T4 50�60K.

Figure 21. Orbital contribution to the magnetic susceptibility.
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Figure 22. Combined effect of the exchange interaction and positive tetragonal crystal field.

Figure 23. Orbital part of the magnetic susceptibility and influence of the tetragonal crystal field.
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In the opposite case of the negative values of D, the state 1, 10j i always remains the
ground one; but the ferromagnetic effect is weak because the excited spin singlets are close
in energy to the ground state. This result is in line with what one can obtain considering

the ½2Eðe1Þ�A � ½
2Eðe1Þ�B-exchange problem.

The above discussion demonstrates that the approach based on the use of spherical

ITOs provides not only an efficient computational tool, but it is also of great help in the
understanding of the magnetic properties of systems containing ions with unquenched
orbital angular momenta. Untill now the effect of SO coupling on the magnetic anisotropy
has not been analysed. The role of this interaction will be discussed later on in connection
with the analysis of the magnetic behaviour of the [Ti2Cl9]

3� cluster.

6.2. Orbitally dependent exchange in [Ti2Cl9]
3�

6.2.1. Exchange Hamiltonian of a face-shared bioctahedral 2sþ1T2 tn2
� �
�2sþ1T2 tn2

� �
cluster

Now following ref [130] we will apply the technique of the orbitally-dependent
Hamiltonian to the analysis of the magnetic properties of the face-shared bioctahedral

d1 2T2

� �
� d1 2T2

� �
dimer (D3h). The Ti(III) ions form well-isolated dimers of this kind in

the crystal structure of Cs3Ti2Cl9 [154,155] and Cs3Ti2Br9 [156], whose magnetic and
spectroscopic properties were a subject of the discussion for almost two decades [125–
130,155]. A spectacular feature of the magnetic behaviour of the Ti2Cl9½ �

3� entity is a
significant magnetic anisotropy [155] that indicates the importance of the orbital
interactions. This relatively simple system represents a good test for the theory of the

orbitally dependent exchange.
The molecular structure of Ti2Cl9½ �

3� and the local coordinate frames associated

with the metal sites are shown in Figure 24. It is convenient to introduce the trigonal
local coordinates XA,YA,ZA and XB,YB,ZB with ZA ZBð Þ axes directed along the C3 axis.
In Figure 24, these frames are shown together with the cubic ones (xA, yA, zA
and xB, yB, zB). The molecular frame is chosen to coincide with the local trigonal
frame XA,YA, ZA. The real trigonal forms of t2 and e orbitals on each metal centre are
defined by

t2-basis

a2 ¼ dZ2 ,

�2 ¼ ð1=
ffiffiffi
3
p
Þ �dXZ þ

ffiffiffi
2
p

dX2�Y2

� �
,

"2 ¼ ð1=
ffiffiffi
3
p
Þð�dYZ �

ffiffiffi
2
p

dXYÞ:

8>>>><
>>>>:

e-basis
� ¼ ð1=

ffiffiffi
3
p
Þ dX2�Y2 þ

ffiffiffi
2
p

dXZ
� �

,

" ¼ ð1=
ffiffiffi
3
p
Þ �dXY þ

ffiffiffi
2
p

dYZ
� �

:

8<
:

ð6:3Þ

These orbitals refer to the local trigonal Xi,Yi,Zi ði ¼ A,BÞ frames, where the index i is
omitted. The �, " and �2, "2 functions are the components of a trigonal e representations.
The same notations will be used for the many-electron wave-functions, namely, we use �2,
"2, a2 for T2 basis and �, " for E basis. In addition, the T1 basis will be denoted by �1, "1, a1.
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The real trigonal basis (�2, "2, a2, �1, "1, a1, �, ") is related to the cubic one

�, 
, �,�,	, �, u, vð Þ as follows:

T1-basis

�1 ¼ ð1=
ffiffiffi
6
p
Þ 2 � � �� 	ð Þ,

"1 ¼ ð1=
ffiffiffi
2
p
Þ �� 	ð Þ,

a1 ¼ 1=
ffiffiffi
3
p� �

�þ 	þ �ð Þ:

8><
>:

T2-basis

�2 ¼ ð1=
ffiffiffi
6
p
Þ 2� � � � 
ð Þ,

"2 ¼ ð1=
ffiffiffi
2
p
Þ � � 
ð Þ,

a2 ¼ ð1=
ffiffiffi
3
p
Þð� þ 
þ �Þ:

8><
>:

E-basis
� ¼ u

" ¼ �:

�
ð6:4Þ

Let us assume that the ground 2sþ1T2 term of each metal ion originates only from the tn2
electronic configuration, so that solely the transfer processes involving the electrons of the

t2 shells should be taken into account. Then t here are the following two non-vanishing
(under the trigonal symmetry conditions) transfer integrals describing the tA2 $ tB2 electron

Figure 24. Cartesian cubic and trigonal frames for a face-shared binuclear system: local cubic frames
(a), local trigonal frames for the sites A (b) and B (c).
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hopping: tðaA2 , a
B
2 Þ � ta and tð�A2 , �

B
2 Þ ¼ tð"A2 , "

B
2 Þ � te. The kinetic exchange Hamiltonian

for the ½2sþ1T2ðt
n
2Þ� A � ½

2sþ1T2ðt
n
2Þ� B pair of D3h symmetry can be presented in the form

given by Equations (5.20), in which the operators R̂k represent the sum of three

contributions

R̂k ¼ R̂
ðaÞ
k þ R̂

ðaeÞ
k þ R̂

ðeÞ
k : ð6:5Þ

Here R̂
ðaÞ
k is the term proportional to t2a. This term can be expressed as

R̂
ðaÞ
k ¼ �ð2=3Þt

2
a F
ðkÞ
A1A1

ÔA
A1
ÔB

A1
þ 2F

ðkÞ
T2T2

ÔA
T2a2

ÔB
T2a2

h
þ

ffiffiffi
2
p

F
ðkÞ
A1T2

ÔA
A1
ÔB

T2a2
þ ÔA

T2a2
ÔB

A1

� 
i
,

ð6:6Þ

where the short notation F
ðKÞ
GG0 ðt2 t2 t2 t2Þ � F

ðKÞ
GG0 is used. The term proportional to ta te is

given by

R̂
ðaeÞ
k ¼ �ð2=3Þtate 2F

ðkÞ
EE ÔA

E�Ô
B
E� þ ÔA

E"Ô
B
E"

� 
h
þ 3F

ðkÞ
T1T1

ÔA
T1�1

ÔB
T1�1
þ ÔA

T1"1
ÔB

T1"1

� 

þ F

ðkÞ
T2T2

ÔA
T2�2

ÔB
T2�2
þ ÔA

T2"2
ÔB

T2"2

� 

�

ffiffiffi
2
p

F
ðkÞ
ET2

ÔA
E�Ô

B
T2�2
þ ÔA

T2�2
ÔB

E� þ ÔA
E"Ô

B
T2"2
þ ÔA

T2"2
ÔB

E"

� 
i
:

ð6:7Þ

Finally, the term proportional to t2e is the following:

R̂
ðeÞ
k ¼ �ð2=3Þt

2
e 2F

ðkÞ
A1A1

ÔA
A1
ÔB

A1
þ F

ðkÞ
EE ÔA

E�Ô
B
E� þ ÔA

E"Ô
B
E"

� 

þ

h
3F
ðkÞ
T1T1

ÔA
T1a1

ÔB
T1a1

þ F
ðkÞ
T2T2

2ÔA
T2�2

ÔB
T2�2
þ 2ÔA

T2"2
ÔB

T2"2
þ ÔA

T2a2
ÔB

T2a2

� 

�

ffiffiffi
2
p

F
ðkÞ
A1T2

ÔA
A1
ÔB

T2a2
þ ÔA

T2a2
ÔB

A1

� 

þ

ffiffiffi
2
p

F
ðkÞ
ET2

ÔA
E�Ô

B
T2�2
þ ÔA

T2�2
ÔB

E� þ ÔA
E"Ô

B
T2"2
þ ÔA

T2"2
ÔB

E"

� 
i
:

ð6:8Þ

The orbital matrices Ô�� defined with the real trigonal T2 basis are given in Table 12.
The parameters F

ðkÞ
��0 for

2T2ðt
1
2Þ

� �
A
� 2T2ðt

1
2Þ

� �
B
dimer (the case of Ti2Cl9½ �

3�) are given by

Equation (6.1).

6.2.2. Energy pattern and magnetic anisotropy

Before proceeding to the analysis of the magnetic properties of Ti2Cl9½ �
3�, we will discuss

the magnetic anisotropy caused by the orbitally dependent exchange. At this step, only the

exchange interaction will be taken into account. In the evaluation of the energy pattern
and subsequent calculations of the magnetic properties of Ti2Cl9½ �

3�, we assume the same

A,B,C and Dq values for Ti(II) ion as those used in Section 5. The pattern of the exchange
splittings can be evaluated either by the diagonalisation of the exchange Hamiltonian

expressed in terms of irreducible cubic tensors and spin operators, with the aid of the
symmetry-adapted orbital basis given in Table 13, or by the diagonalisation of the
exchange Hamiltonian expressed in terms of spherical ITOs. These two possibilities

provide two alternative ways of classification of the eigenvectors, which can be referred
to as S �-classification and S,LML-classification. Note that under the trigonal crystal

field splitting of the ground 2T2 term of the Ti(III) ion, the ground manifold
2T2ðt

1
2Þ

� �
A
� 2T2ðt

1
2Þ

� �
B

splits into the groups of states ð2A1ÞA � ð
2A1ÞB (a� a-group),
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ð2A1ÞA � ð
2EÞB, ð

2EÞA � ð
2A1ÞB, (a� e-group) and ð2EÞA � ð

2EÞB (e � e-group), and each

term in Table 13 arises from one of this group (last line in Table 13).
Figure 25 shows the energy levels as a function of the ratio te=ta in the range

�1 
 te=ta 
 1. One can see that the energy pattern is symmetric with respect to the change

of the sign of te=ta. In a wide range of te=ta, the ground state is the spin-singlet 1A01. Only at

te=ta
�� ��4 0:9 the spin-triplet 3E 0 (or 3E 00) becomes the ground state. The highest excited

state is accidentally degenerate and comprises several multiplets, mainly spin triplets.

It is to be noted that the energy gap between highest and lowest levels is almost

independent of the ratio te=ta (except the terminal parts of the diagram) and mainly

depends on ta.
The following three special high-symmetric cases are seen in Figure 25: a pseudo-

spherical case (te=ta ¼ 1), a spherical case (te=ta ¼ �1) and an axial case (te=ta ¼ 0). In each

of these cases the energy pattern exhibits a high degree of accidental degeneracy. This

is a clear indication that the effective exchange Hamiltonian belongs to a more general

Table 12. The orbital matrices Ô� � with � ¼ A1, Eð� ¼ �, "Þ, T1ð� ¼ �1, "1, a1Þ, T2ð� ¼ �2, "2, a2Þ
defined with the real trigonal T2 basis ð�2, "2, a2Þ.

ÔA 1
ÔE � ÔE "

1 0 0
0 1 0
0 0 1

0
@

1
A 1=2 0 1=

ffiffiffi
2
p

0 �1=2 0
1=

ffiffiffi
2
p

0 0

0
@

1
A 0 �1=2 0

�1=2 0 1=
ffiffiffi
2
p

0 1=
ffiffiffi
2
p

0

0
@

1
A

ÔT1 �1 ÔT1 "1 ÔT1 a1

0 0 0
0 0 1=

ffiffiffi
2
p

0 �1=
ffiffiffi
2
p

0

0
@

1
A 0 0 �1=

ffiffiffi
2
p

0 0 0
1=

ffiffiffi
2
p

0 0

0
@

1
A 0 1=

ffiffiffi
2
p

0
�1=

ffiffiffi
2
p

0 0
0 0 0

0
@

1
A

ÔT2 �2 ÔT2 "2 ÔT2 a2

1=
ffiffiffi
3
p

0 �1=
ffiffiffi
6
p

0 �1=
ffiffiffi
3
p

0
�1=

ffiffiffi
6
p

0 0

0
@

1
A 0 �1=

ffiffiffi
3
p

0
�1=

ffiffiffi
3
p

0 �1=
ffiffiffi
6
p

0 �1=
ffiffiffi
6
p

0

0
@

1
A �1=

ffiffiffi
6
p

0 0
0 �1=

ffiffiffi
6
p

0
0 0 2=

ffiffiffi
6
p

0
@

1
A

Table 13. Symmetry adapted orbital basis for the face-shared 2T2ðt
1
2Þ �

2T2ðt
1
2Þ bioctahedron,

related terms and corresponding groups of states in a trigonal crystal field.

Terms Symmetry-adapted orbital basis Group of states

1, 3A002
1A01
� �

aA2 a
B
2 a � a

2, 3E 00½1E 0� ð1=
ffiffiffi
2
p
Þ "A2 a

B
2 þ aA2 "

B
2

� �
, ð1=

ffiffiffi
2
p
Þ �A2 a

B
2 þ aA2 �

B
2

� �
a � e

3E 0 ½1E 00� ð1=
ffiffiffi
2
p
Þ �A2 a

B
2 � aA2 �

B
2

� �
, ð1=

ffiffiffi
2
p
Þ "A2 a

B
2 � aA2 "

B
2

� �
2, 3A002½

1A01� ð1=
ffiffiffi
2
p
Þ �A2 �

B
2 þ "

A
2 "

B
2

� �
e � e

3A02
1A001
� �

ð1=
ffiffiffi
2
p
Þ "A2 �

B
2 � �

A
2 "

B
2

� �
1, 3E 00½1E 0� ð1=

ffiffiffi
2
p
Þ �A2 "

B
2 þ "

A
2 �

B
2

� �
, ð1=

ffiffiffi
2
p
Þ "A2 "

B
2 � �

A
2 �

B
2

� �
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symmetry group than the point symmetry groupD3h. The terms pseudo-spherical, spherical

and axial are closely related to the magnetic anisotropy and will be clarified below.
Let us consider first the pseudo-spherical and spherical limits, which are shown in the

left and right sides of Figure 26, correspondingly. Since the diagram is symmetric, the

energies of the levels in these two cases are the same. In both limits the energy pattern

includes five accidentally degenerate levels, with the corresponding energies being

determined by the following four parameters:

J1 ¼ t2aFð
3T1Þ, J2 ¼ �t

2
aFð

1T2Þ, J3 ¼ �t
2
aFð

1EÞ, J4 ¼ �t
2
aFð

1A1Þ: ð6:9Þ

It is to be noted that Fð1T2Þ � Fð1EÞ because the reduced states 1T2 and
1E are almost

degenerate. For this reason the second and the third excited levels are almost degenerate.

Figure 26 shows that in spite of the fact that the energies at te=ta ¼ 1 and te=ta ¼ �1 are

the same, the wave-functions are different. This leads to a drastic difference in the

magnetic behaviour of the system in these two limits. In the pseudo-spherical limit

(te=ta ¼ 1) the ground level with S ¼ 1 comprises the orbital singlet 3A02 , and the orbital

doublet 3E 0 , which can be associated with the wave-functions 1, 10j i, and 1, 2	 1j i,

respectively. One can see that 1, 2	 1j i states contribute strongly to �jj, while the matrix

elements of L̂X and L̂Y disappear within the ground 3A02,
3E 0 manifold. Inspecting in the

same way the remaining S,LMLj i states, one can see that the operator L̂Z has

non-vanishing matrix elements within all levels with ML 6¼ 0 L ¼ 1, 2ð Þ.

Figure 25. Dependence of the energy pattern formed by the magnetic exchange in the face-shared
2T2 t12

� �
� 2T2 t12

� �
dimer on the ratio te=ta.
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On the contrary, the matrix elements of L̂X and L̂Y vanish within each level. Moreover,
these operators do not mix the different levels belonging to the low-lying group, which
includes the ground and the two excited levels. Only the matrix elements connecting these
levels with the highest highly degenerate level are non-vanishing, giving rise to the
relatively small second-order orbital contributions to �?. It means that, in this case, the
magnetic anisotropy is strong with �jj4�?. Finally, it is notable that each level in the case
te=ta ¼ 1 is ð2Lþ 1Þ-fold degenerate like in the system of spherical symmetry, but it does
not correspond to a definite value of L ¼Mmax

L (e.g. the values L ¼ 1 and L ¼ 2 are
present in the ground state with ML ¼ �1, 0, 1). For this reason, we refer to this case as
pseudo-spherical limit. Indeed, in this case the system is strongly magnetically anisotropic.

It is remarkable, however, that the pseudo-spherical limit occurs under the ‘spherical’
condition ðta ¼ teÞ for the transfer integrals.

The main feature of the energy pattern in the spherical limit (te=ta ¼ �1) is that each
level can be associated with one or several atomic SL terms. In fact, the ground level
comprises accidentally degenerate states 3A02 1, 10j ið Þ and 3E 00 1, 1	 1j ið Þ and thus can be
regarded as an atomic term with L ¼ 1 and S ¼ 1 (3P-term), the first excited
state represents a 1D term, etc. This means that, as distinguished from the previous
case, the system at te=ta ¼ �1 is magnetically isotropic. Therefore, this case can be referred
to as true spherical limit.

The last special case is the axial limit ðte ¼ 0Þ. The corresponding energy pattern is
shown in Figure 27. The ground state is the orbital and spin singlet 1A01 that corresponds

Figure 26. The pattern of the exchange splittings in the spherical (left-side labels) and pseudo-
spherical (right-side labels) limits.

International Reviews in Physical Chemistry 197

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
3
4
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



to the wave-functions �
ffiffiffiffiffiffiffiffi
1=3
p

0, 00j i þ
ffiffiffiffiffiffiffiffi
2=3
p

0, 20j i. The first excited group of levels
consists of two closely spaced sublevels. One of them (first excited level) comprises spin
triplets 3E 0 1, 2	 1j ið Þ, 3E 00 1, 1	 1j ið Þ and the second excited level includes spin singlets
1E 0 0, 1	 1j ið Þ, 1E 00 0, 2	 1j ið Þ. Finally, the highest level comprises both spin-triplets
and spin-singlets. It should be noted that this energy scheme is similar to that obtained in
[126], but in [126] the spin-triplets 3E 0, 3E 00 and the spin-singlets 1E 0, 1E 00 were found to
be accidentally degenerate because the differences between the energies of different
CT states were neglected. In the low-temperature limit �jj ¼ 0 because in the ground
state ML ¼ 0 and S ¼ 0. At the same time, the perpendicular magnetic susceptibility
appears as a TIP due to the mixing of the ground state with the excited states 0, 2	 1j i

ð1E 00Þ by the orbital part of Zeeman interaction. We thus find that �jj5�?, that is the
anisotropy has the opposite sign compared to the pseudo-spherical case. Note
that �jj5�? not only in the axial limit but also for all te=ta in the range jte=taj5 0:9
(Figure 25), where the ground term is 1A01 (superposition of 0, 00j i and 0, 20j i). At the same
time, �jj4�? for the ground terms 3E 00 te=ta 5� 0:9ð Þ or 3E 0 te=ta 4 0:9ð Þ possessing
ML ¼ 	1.

In all cases, with the exception of the true spherical limit, the magnetic anisotropy is
axial (the energies depend on jMLj) and dependent on the ratio te=ta. In this view, it should
be noted that we use the term ‘axial’ for the limiting case te ¼ 0 only to emphasize the axial
interrelation between te and ta. One can also note that in all cases the states of the system
are the eigenvectors of L̂Z, and hence no second-order Zeeman effect is possible in the
parallel field.

Figure 27. The pattern of the exchange splittings in the axial limit.

198 A. Palii et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
3
4
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



6.2.3. Magnetic behaviour of the [Ti2Cl9]
3� binuclear unit

The first study of magnetic and spectroscopic properties of the salts [M2X9]
3� (X¼Br, I)

containing first-row transition metal ions were reported in [154]. Later on [155], a detailed

magnetic and spectroscopic study on crystalline samples of Cs3Ti2Cl9 was performed.

It was observed that the infrared absorption spectra exhibits a broad featureless band

located in the region 800–3000 cm�1 that cannot be assigned to a single Ti(III) ion

transition. The temperature dependencies of �jj and �? measured in [155] (dotted lines in

Figure 28) indicated that the low-temperature magnetic susceptibility is small and strongly

anisotropic with �?4�jj. A remarkable feature of the experimental data is that the

magnetic anisotropy decreases with the increase of temperature. Both �jj and �? decrease

when the samples cool down and they become temperature independent at T5 100K.

These data clearly show that the ground state of the pair is non-magnetic.
The measurements of the infrared reflectivity from a single crystal of Cs3Ti2Cl9 showed

the broad signals between 350 and 950 cm�1 [157]. Since no vibrational transitions could

be expected in this energy range, these signals are of the magnetic origin indicating that the

first excited level has the energy of at least 450 cm�1. A similar conclusion was made for a

polycrystalline sample of Rb3Ti2Br9 on the basis of the INS experiments exhibiting a

broad band of magnetic origin between 400 and 600 cm�1 [157].
Some preliminary remarks concerning the relevant values of the key parameters are to

be made. First, the results of the extended Hückel calculations performed in [126] have

demonstrated that t2a � t2e (axial limit) and te and ta are of opposite signs. This result is

consistent with the fact that the ta transfer corresponds to a strong (due to the short

intermetallic distance) through-space interaction (Figure 29), whereas the te transfer is

responsible for the weaker through-ligand interaction. The conclusion about strong

difference in the magnitudes of te and ta has been confirmed by the ab initio calculations of

Ceulemans et al. [127–129]. In [127], the ratio ta=te was roughly estimated as ta=te � �6:5
(�7 in [128,129]). This corresponds to te=ta � �0:154. In [130], this ratio was used in the

best-fit procedure.

Figure 28. Magnetic behaviour of the Ti2Cl9½ �
3� unit, comparison with the theoretical curve (solid

line) calculated with ta ¼ �5208 cm�1, D ¼ �320 cm�1 and � ¼ 0:71.
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Since the ratio te=ta is close to the axial limit, it is worthwhile to inspect the effect of the
trigonal field in this limit. Figure 30 shows that the negative trigonal field does not change
the ground state 1A01 leading only to its additional stabilisation. The spin triplet 3A002 arising
from the highest group of levels is stabilised in the same way, so in a strong crystal field
limit the pair of the levels 1A01,

3A002 arising from the a� a-group (Table 13) proves to be
well isolated. Provided strong positive trigonal field, the ground level is accidentally
degenerate comprising the states 1A01,

1E 0, 3A02,
3E 00, 3A002,

1A001, which arise from the e� e
group. This degeneracy is obviously due to the fact that only the electron transfer of the
e–e type is able to split the e� e group, but such transfer is excluded in the axial limit.
At low temperature, Ti2Cl9½ �

3� exhibits almost diamagnetic behaviour, so one can expect
the crystal field is negative and the diamagnetic state 1A01 is the ground one. Note that this
conclusion is common for all cited theoretical studies of Ti2Cl9½ �

3�. For this reason, one
can consider only the values D5 0 in the best-fit procedure.

Figure 30 gives some qualitative hints about the influence of the trigonal crystal field
on the magnetic behaviour. First, one can see that all wave-functions depicted in Figure 30
are the eigenvectors of L̂Z, so that first-order Zeeman splitting as well as the TIP
contribution vanish within the ground level and therefore ð�jjÞT!0 ¼ 0. At the same time,
ð�?ÞT!0 appears as a second-order effect due to the mixing of the ground 1A01 term with
the orbital doublets 1E 0 and 1E 00. Since 1A01 and

1E 0, 1E 00 terms belong to a� a and a� e
groups, respectively, the 1A01�

1E 0, 1E 00 gap linearly increases with the increase of jDj. As
a consequence, the value ð�?ÞT!0 is expected to decrease with the increase of the trigonal

Figure 29. Overlap scheme associated with the ta transfer.
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field. Inclusion of SO coupling leads to a small admixture of the magnetic states to the
ground diamagnetic level and as a result ð�jjÞT!0 becomes non-vanishing.

In the best-fit procedure in [130] the values for the cubic crystal field and Racah
parameters for the TiðIIÞ ion (reduced state) are given in Section 4, the value � ¼ 155 cm�1

for a free Ti(III) ion [5] is also adopted. Finally, three parameters ta, D and � are varied in
the fitting of the magnetic data, with D being negative in accordance with the above
arguments. The best-fit was achieved for ta ¼ �5208 cm

�1, D ¼ �320 cm�1 and � ¼ 0:71.
The �jj versus T and �? versus T curves calculated with the set of the best-fit parameters
are shown in Figure 28 (solid lines) along with the above-described experimental ones.
The theoretical curve for �? is in a good agreement with the experimental data in the
low-temperature region (below 170K). The calculated �jj at low temperatures is also in a
satisfactory agreement with the experimental values. It is also remarkable that the theory
reproduces the slopes of �jj and�?. Finally, it is seen that, in a good agreement with the
experimental data, the calculated magnetic anisotropy remains constant below 100K and
decreases with the increase of T in the high-temperature region ðT4 150KÞ.

Figure 31 shows the energy scheme calculated (without taking into account the SO
coupling) with the set of the best fit parameters. The ground state is 1A01, and the first
excited state 3A002 is separated by the gap 706 cm�1 from the ground one (a� a-group). The
next four orbital doublets 3E 00, 1E 00, 3E 0 and 1E 0 (a� e-manifold) fill the gap that is
approximately 135 cm�1. This group of levels is close to the level 3A002. Finally, the
e� e-group of levels forms a narrow band at about 1340 cm�1.

6.2.4. Discussion of the rival models for the exchange in [Ti2Cl9]
3�

To understand the magnetic behaviour of [Ti2Cl9]
3�, Briat et al. [155] employed the

theoretical model proposed by Kahn [158]. This model takes into account the local

Figure 30. Influence of the negative trigonal field on the energy pattern in the axial limit.
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trigonal crystal field stabilising the orbital singlet of each Ti(III) ion, the SO coupling, the

isotropic magnetic exchange and the orbit–orbit interaction of the form �Kl̂A l̂B. Although

this model does not take into account all relevant terms involved in the orbitally dependent

exchange Hamiltonian, it provided an important indication on the range of parameters.

Particularly, the gap between 1A01 and
3A002 was estimated to be around 630 cm�1, this value

provides a satisfactory explanation of the slope of �jj versus T and �? versus T curves

observed at T4 100K.
A more comprehensive model was developed by Drillon and Georges [125]. This model

was based on the approach proposed by these authors to solve the problem of the kinetic

exchange in the orbitally degenerate systems [124]. The orbitally dependent kinetic

exchange, the SO coupling and trigonal crystal field were included in the model. In [125]

the cubic one-electron basis was used, in which there are two non-vanishing (under D3h

symmetry) transfer integrals t � tð�A, �BÞ ¼ tð
A, 
BÞ ¼ tð�A, �BÞ (diagonal transfer) and

t 0 � tð�A, 
BÞ ¼ tð
A, �BÞ ¼ tð�A, �BÞ (off-diagonal transfer). These transfer integrals are

illustrated by Figure 32. Using Equation (6.4), one finds the following relationship

between the transfer integrals defined in trigonal and cubic bases:

ta ¼ tþ 2t 0, te ¼ t� t 0: ð6:10Þ

In [125] the crossing transfer integral was neglected (t 0 ¼ 0), and this assumption is

equivalent to the pseudo-spherical limit (te=ta ¼ 1) in our terminology. Within this

approximation, the kinetic exchange Hamiltonian was found to contain only the scalar

Figure 31. Energy pattern of the Ti2Cl9½ �
3� unit calculated with the set of the best fit parameters.
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products, namely, l̂A l̂B, ðl̂A l̂BÞ
2, l̂A l̂BŝAŝB, ðl̂A l̂BÞ

2 ŝAŝB and ŝAŝB. For this reason in [125] the

kinetic exchange Hamiltonian was regarded as fully isotropic, and LS labels (L ¼ 0, 1, 2,

S ¼ 0, 1) for its eigenvalues were used. At the same time, according to [125], the inclusion

of the crossing transfer terms (t 0 6¼ 0) should lead to the magnetic anisotropy due to the

appearance of the contributions like l̂AZ l̂BZ, etc. Since the crossing transfer terms were

regarded as small corrections, these authors arrived at the conclusion that the exchange

anisotropy was a minor effect and the main reason for the observed anisotropy of

[Ti2Cl9]
3� was the combined action of trigonal crystal field and SO coupling, i.e. the single-

ion anisotropy. This conclusion is in a clear contradiction with the results of [130] so far

discussed. In fact, we have shown that the exchange Hamiltonian is fully anisotropic with

�?5�jj even providing t 0 ¼ 0. We have also shown that the inclusion of the crossing terms

tends to change the sign of the anisotropy. This means that the crossing terms cannot be

regarded as the only source of the exchange anisotropy.
In order to clarify the origin of this discrepancy, let us analyse a selected orbital

contribution to the kinetic exchange Hamiltonian, defined in the complex trigonal basis

�2t2aF
ð0Þ
T1T1

ÔA
T1a1

ÔB
T1a1
þ ÔA

T1�1
ÔB

T1�1
þ ÔA

T1"1
ÔB

T1"1

� 

: ð6:11Þ

This contribution originates from the terms R̂
a eð Þ
0 and R̂

eð Þ
0 provided that te ¼ ta. One can

present this term as

J l̂AZl̂
B
Z þ l̂AXl̂

B
X þ l̂AYl̂

B
Y

� 

, ð6:12Þ

where J ¼ �2 t2a F
0ð Þ
T1 T1

. This expression has a form of a scalar product l̂A l̂B but, in fact, it is

not a scalar product, because l̂A and l̂B are defined in different local trigonal coordinate

frames rotated with respect to each other by the angle � around the common trigonal

ZA,ZB axis. Transforming the operator l̂B to the molecular frame one arrives at the

anisotropic operator

J �l̂A l̂B þ 2l̂AZl̂
B
Z

� 

: ð6:13Þ

Figure 32. Overlap schemes associated with the diagonal t (a) and off-diagonal t 0 bð Þ transfer
integrals.
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Figure 33 represents the diagram correlating the eigenvalues of the anisotropic

operator, Equation (6.13), with those of isotropic operator J l̂A l̂B. One can see that in

this special case the anisotropic operator gives rise to the same scheme of the energy

levels, obeying the Lande rule, as the isotropic operator does, but the eigenvectors of

these two operators are different. The eigenvalues of the anisotropic operator, Equation

(6.13), depend on MLj j (Figure 33b), while in the isotropic case L ðL ¼ 0, 1, 2Þ is a

good quantum number (Figure 33a). This consideration shows that the conclusion

made in [125] about the isotropic character of the exchange Hamiltonian and

misleading labelling of the eigenvectors could be the result of overlooking the

assignment of the operators l̂A and l̂B to different coordinate frames. In this view,

conclusion [130] about the role of crossing transfer terms also differs from the

conclusion made in [125]. One should also mention the critical comments of Ceulemans

et al. [127,129] addressed to the study of Drillon and Georges. According to the

statement of Ceulemans et al., the isotropy of the magnetic exchange obtained in [125]

was the consequence of ignoring the difference (in sign and magnitude) between

hopping integrals ta and te. However, as we have demonstrated, the condition te ¼ ta
corresponds to the pseudo-spherical (but not true spherical) limit, and the magnetic

exchange in this limit is fully anisotropic.
Leuenberger and Güdel [126] proposed a model that is similar to that developed

in [125] in its background, but it is quite different in the mathematical procedure and

in the assumption about the relative importance of the relevant transfer pathways.

As distinguished from the model in [125], it was implied a strong difference between the

transfer integrals ta and te (see discussion in the previous section). In this point, the model

in [126] seems to be more realistic than that developed in [125].
Finally, let us give a brief overview of the results obtained in the framework of ab initio

calculations. In the study of Ceulemans et al. [127], a complete active space (CAS) SCF

Figure 33. Correlation diagram for the isotropic (a) and anisotropic (b) operators of orbital
interactions provided that J4 0: 0, 0ð Þ, 2, 0ð Þ½ � is the notation of the mixed states with L ¼ 0
and L ¼ 2.
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wave-function constituted the zeroth-order wave-function in a perturbation treatment
of the electron correlation. The CASSCF wave-function was constructed by distributing
two electrons in the titanium 3d-derived active orbitals. The remaining dynamical
electron correlation energy was obtained from the second-order perturbation theory
(CASPT2). Then the two sets of such CASPT2 calculations were performed. In the first
set, denoted as CASPT2(v), only the valence electrons originating from Ti 3d and
Cl 3s,3p were correlated. In a second set, denoted as CASPT2(c), authors also included
the Ti 3s, 3p electrons. The following three contraction schemes (denoted as A, B, C)
were used: 6s4p3d1f on Ti, and 4s3p on Cl (basis A); 9s7p5d1f on Ti, and 4s3p on Cl
(basis B); 6s4p3d1f on Ti, and 4s3p1d on Cl (basis C). Accordingly, the following five
versions of the ab initio calculations were presented in [127]: CASPT2(v)A,
CASPT2(v)C, CASPT2(c)A, CASPT2(c)B and CASPT2(c)C. These versions give
quite different results both for the 1A01,

3A002 gap and for the relative positions of the
a� a, a� e and e� e groups. By comparing our energy pattern (Figure 31) calculated
with the set of the best-fit parameters with these results we see that our scheme is most
close (at least qualitatively) to the result obtained by CASPT2(v)A, mainly in the
positions of the levels arising from a� a and a� e groups that are responsible for the
magnetic behaviour below 300K.

Concluding this discussion one should mention the ab initio study of Chen et al.
[159]. The 1A01,

3A002 gap reported in their paper (320 cm�1) proves to be too small to
account for the experimentally observed slope of �ðTÞ at T4 150 K, and the position
of the excited levels (a� e-group is in the range of 1680–1850 cm�1) is too high to be
able to explain the observed low-temperature magnetic anisotropy and its temperature
dependence.

6.3. Orbitally dependent exchange between many-electron metal ions

6.3.1. Exchange Hamiltonian for a corner-shared bioctahedral Co(II) cluster

The conditions of the applicability of HDVV exchange Hamiltonian remained out of
the framework of the Lines theory considered in Section 3. At the same time, the ab initio
calculations [160] performed for the binuclear chlorine-bridged Co(II) complexes
L3CoCl3CoL3 have shown that the energy pattern formed by the superexchange is more
complex than that obtained within the isotropic Lines model. A more comprehensive study
of the problem of exchange interaction in Co(II) clusters was performed in [161,162].
As distinguished from the phenomenological Lines theory, this approach is microscopic in
its nature. Within this approach, it was possible to reveal the underlying mechanisms
governing the magnetic anisotropy or, in other words, to understand how the magnetic
anisotropy of the system depends on the basic parameters. As an illustration, let us
consider a corner-shared bioctahedral Co(II) cluster of D4h symmetry (Figure 19). In this
case, the main contributions to the superexchange arise from the following most efficient
transfer pathways: �$ �, 
$ 
 (�-transfer) and u$ u (�-transfer). In [161,162] a
simplified version of the theory that neglects the differences between the energies of
the CT states was applied. This can be done provided that A� B,C,Dq. Within this
approximation, the energies of all CT states corresponding to the ðd8ÞA � ðd

6ÞB and
ðd6ÞA � ðd

8ÞB configurations are assumed to be equal to an effective excitation energy "e,
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and the kinetic exchange Hamiltonian is presented in the form of Equation (5.20), in which

the operators R̂k are given by

R̂k ¼
1

"e
ð2=3Þt2�P

ðkÞ
A1 A1
ðt2t2t2t2Þ þ ð1=2Þt

2
�P
ðkÞ
A1 A1
ðeeeeÞ

h in
ÔA

A1
ÔB

A1

þ ð1=3Þt2�P
ðkÞ
EEðt2t2t2t2Þ þ ð1=2Þt

2
�P
ðkÞ
EEðeeeeÞ

h i
ÔA

EuÔ
B
Eu þ t2�P

ðkÞ
EEðt2t2t2t2ÞÔ

A
EvÔ

B
Ev

þ t2�P
ðkÞ
T1T1
ðt2t2t2t2ÞÔ

A
T1�

ÔB
T1�
þ ð3=2Þt�t�P

ðkÞ
T1T1
ðt2et2eÞ Ô

A
T1�

ÔB
T1�
þ ÔA

T1	
ÔB

T1	

� 


þ t2�P
ðkÞ
T2T2
ðt2t2t2t2ÞÔ

A
T2�

ÔB
T2�
þ ð1=2Þt�t�P

ðkÞ
T2T2
ðt2et2eÞ Ô

A
T2�

ÔB
T2�
þ ÔA

T2

ÔB

T2


� 


�
ffiffiffi
2
p
=3

� 

t2�P
ðkÞ
A1E
ðt2t2t2t2Þ þ ð1=2Þt

2
�P
ðkÞ
A1E
ðeeeeÞ

h i
ÔA

A1
ÔB

Eu þ ÔA
EuÔ

B
A1

� 
o
:

ð6:14Þ

In Equation (6.15), the parameters P
ðkÞ
��0 ð�A,�

0
A,�B,�

0
BÞ play the same role as the

parameters F
ðkÞ
��0 ð�A,�

0
A,�B,�

0
BÞ in a more general theory described above.

The wave-function of the ground state of Co(II) ion represents a mixture of two 4T1

terms arising from two strong crystal field electronic configurations t52e
2 and t42e

3:

�grð
4T1Þ ¼ C1 t52ð

2T2Þe
2ð3A2Þ,

4T1

�� �
þ C2 t42ð

3T1Þe
3ð2EÞ, 4T1

�� �
, ð6:15Þ

where the coefficients are found by diagonalising the matrix of the Coulomb mixing of two
4T1-terms [100]. One can find the following expressions for these coefficients:

C1ð2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ
ð�Þ

wÞ=2
q

, w ¼
9Bþ 10Dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9Bþ 10Dqð Þ
2
þ144B2

q : ð6:16Þ

Provided Dq=B� 1 (weak crystal field limit), one finds C1 ¼ 2=
ffiffiffi
5
p

,C2 ¼ 1=
ffiffiffi
5
p

. In this

case, Equation (6.15) becomes the wave-function of 4F-state of a free Co(II)-ion. In a

strong field limit (Dq=B� 1) one obtains C1¼ 1, C2¼ 0. Using the explicit forms of the

wave functions t52e
2, 4T1

�� �
and t42e

3, 4T1

�� �
, in terms of Slater determinants, one can calculate

the set of the exchange parameters P
ðkÞ
��0 ð�A,�

0
A,�B,�

0
BÞ (see [161] for details). The results

of these calculations are given in Table 14. These results combined with Equation (6.16)

provide the dependencies of the parameters P
ðkÞ
��0 on the ratio B=Dq.

It is convenient to present the SO coupling operating within the ground 4T1-state in the

following form:

ĤSO ¼ �ð3=2Þ�ca� ŝA l̂A þ ŝB l̂B

� 

, ð6:17Þ

where �c is the contribution of the covalence to the orbital reduction factor, and

a ¼ �C2
2 þ ð2=3ÞðC1 þ C2Þ

2). The factor �ð3=2Þa appears to distinguish between the

matrices of the orbital angular momentum defined in the �grð
4T1Þ and p-bases. In the weak

crystal field limit a ¼ 1, and in strong crystal field limit a ¼ 2=3. In order to focus on the

magnetic anisotropy produced by the orbitally dependent exchange interaction, we assume

206 A. Palii et al.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
3
4
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



that both Co(II) ions occupy perfect octahedral positions ðD ¼ D0 ¼ 0Þ. Under this
condition a single ion anisotropy is excluded.

6.3.2. Pseudo-spin-1/2 Hamiltonian and exchange anisotropy in a Co(II) dimer

To elucidate the main factors governing the magnetic anisotropy of the Co(II) dimer, let us
analyse the parameters of the pseudo-spin-1/2 Hamiltonian acting within the ground
Kramers doublet space. For the corner-shared bioctahedral cluster (D4h) this Hamiltonian
is axial

Ĥeff ¼ �2Jjj�̂
A
Z �̂

B
Z � 2J? �̂

A
X �̂

B
X þ �̂

A
Y �̂

B
Y

� �
þ gjj	�̂ZHZ þ g?	 �̂XHX þ �̂YHYð Þ � 	2�jjH

2
Z � 	

2�?ðH
2
X þH2

YÞ,
ð6:18Þ

where �̂Z ¼ �̂
A
Z þ �̂

B
Z, etc. are the spin-1/2 operators defined on the basis of the Kramers

doublet (see Section 4)
One has to find a relationship between the set of phenomenological parameters

involved in Equation (6.18) and the microscopic parameters of the system (Dq,B, �, t� , t�).
This problem admits an analytical solution when the SO coupling significantly exceeds the
exchange interaction, and hence the perturbation theory is applicable. The difference
between the procedure we use here and that applied in Section 2 is that now the
perturbation operator V̂ also contains the orbitally dependent exchange contributions,
meanwhile the low-symmetry crystal field terms are excluded (D ¼ D0 ¼ 0). In order to find
the first-order pseudo-spin-1=2 Hamiltonian Ĥ

ð1Þ
eff , one has to calculate the matrices of

one-site operators ŝj, l̂j, and Ôj
�� ŝ

j
kq involved in V̂ within the basis �j ð1=2, 1=2Þ,

Table 14. Non-vanishing parameters P
ðkÞ
��0 �A,�

0
A,�B,�

0
B

� �
.

P
ð0Þ
��0 �A,�

0
A,�B,�

0
B

� �
P
ð1Þ
��0 �A,�

0
A,�B,�

0
B

� �
P
ð0Þ
A1A1
ðt2t2t2t2Þ ¼

1

6"e
5C2

1 þ 4C2
2

� �
C2

1 þ 2C2
2

� �
P
ð1Þ
A1A1
ðt2t2t2t2Þ ¼ �

2

27"e
C2

1 þ 2C2
2

� �2
P
ð0Þ
A1A1
ðeeeeÞ ¼

1

4"e
2C2

1 þ 3C2
2

� �
2C2

1 þ C2
2

� �
P
ð1Þ
A1A1
ðeeeeÞ ¼ �

1

9"e
2C2

1 þ C2
2

� �2
P
ð0Þ
EEðt2t2t2t2Þ ¼ �

1

3"e
C2

1 � C2
2

� �2
P

1ð Þ
EE t2t2t2t2ð Þ ¼ �

4

27 "e
C2

1 � C2
2

� �2
P
ð0Þ
EEðeeeeÞ ¼ �

1

4 "e
C4

2 P
1ð Þ
EE eeeeð Þ ¼ �

1

9 "e
C4

2

P
ð0Þ
T1T1
ðt2t2t2t2Þ ¼

1

8 "e
2C2

1 � C2
2

� �2
P
ð1Þ
T1T1
ðt2t2t2t2Þ ¼

1

18"e
2C2

1 � C2
2

� �2
P
ð0Þ
T2T2
ðt2t2t2t2Þ ¼ �

1

8 "e
2C2

1 þ C2
2

� �2
P
ð1Þ
T2T2
ðt2t2t2t2Þ ¼ �

1

18"e
2C2

1 þ C2
2

� �2
P
ð0Þ
T1T1
ðet2et2Þ ¼ P

ð0Þ
T1T1
ðt2et2eÞ ¼

1

4 "e
C2

1C
2
2 P

ð1Þ
T1T1
ðet2et2Þ ¼ P

ð1Þ
T1T1
ðt2et2eÞ ¼

1

9"e
C2

1C
2
2

P
ð0Þ
T2T2
ðet2et2Þ ¼ P

ð0Þ
T2T2
ðt2et2e Þ ¼ �

3

4 "e
C2

1C
2
2 P

ð1Þ
T2T2
ðet2et2Þ ¼ P

ð1Þ
T2T2
ðt2et2eÞ ¼ �

1

3"e
C2

1C
2
2

P
ð0Þ
A1E
ðt2t2t2t2Þ ¼ P

ð0Þ
EA1
ðt2t2t2t2Þ

¼

ffiffiffi
2
p

6 "e
C2

1 � C2
2

� �
2C2

1 þ C2
2

� �
P
ð1Þ
A1E
ðt2t2t2t2Þ ¼ P

ð1Þ
EA1
ðt2t2t2t2Þ

¼ �
2
ffiffiffi
2
p

27"e
C2

1 � C2
2

� �
C2

1 þ 2C2
2

� �
P
ð0Þ
A1E
ðeeeeÞ ¼ P

ð0Þ
EA1
ðeeeeÞ ¼ �

1

4"e
C4

2 P
ð1Þ
A1E
ðeeeeÞ ¼ P

ð1Þ
EA1
ðeeeeÞ ¼

1

9"e
C2

2 2C2
1 þ C2

2

� �
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�j ð1=2,�1=2Þð j ¼ A,BÞ and to express these matrices in terms of the spin-1=2 matrices.
The results for spin and angular momentum operators are given by Equation (4.5). The
results for Ôj

�� ŝ
j
kq are collected in Table 15 in which we use the operators �� in the cyclic

basis: �00 ¼ �z, �	1 ¼ �ð1=
ffiffiffi
2
p
Þð�x 	 i�yÞ. Then one can represent the first-order effective

pseudo-spin-1=2 Hamiltonian Ĥ
ð1Þ
eff in the form of Equation (6.18), with the following

parameters:

J
ð1Þ
jj ¼ �

2t2�
81"ex

5C2
1 þ 2C2

2

� �2
�

t�t�
54"ex

C2
1C

2
2 �

t2�
324"ex

100C4
1 þ 156C2

1C
2
2 þ 153C4

2

� �
,

J
ð1Þ
? ¼ �

t2�
648"ex

20C2
1 þ 11C2

2

� �2
�
5t�t�
54"ex

C2
1C

2
2 �

t2�
324"ex

44C4
1 þ 164C2

1C
2
2 þ 201C4

2

� �
,

g
ð1Þ
jj ¼ g

ð1Þ
? � g0 ¼ ð1=3Þ 5ge � 2a�ð Þ, �

ð1Þ
jj ¼ �

ð1Þ
? ¼ 0:

ð6:19Þ

It is seen that the first-order perturbation procedure leads to an effective exchange
interaction that is, in general, anisotropic. At the same time, within the first-order
approximation, the g-factor proves to be isotropic and coincides with the g-factor for the
Kramers doublet of the individual Co(II) ion in a perfect octahedral ligand field. The
exchange anisotropy disappears only when both C2 ¼ 0 (strong crystal field limit) and
t� ¼ 0. In this limiting case one arrives at the isotropic pseudo-spin-1=2 Hamiltonian
with J

ð1Þ
jj ¼ J

ð1Þ
? � Jð1Þ ¼ ð25=9ÞJ, where J ¼ �2t2�=9"ex. In order to clarify this result,

one can note that for C2 ¼ 0 ðB=Dq ¼ 0Þ and t� ¼ 0 the initial kinetic exchange
Hamiltonian defined by Equations (5.20) and (6.14), takes the simple HDVV form
Ĥex ¼ 2Jð9=4� ŝAŝBÞ, where J ¼ �2t2�=9"e. This result has a clear physical meaning.
In fact, by inspecting the electronic subshells, which participate in the transfer processes,
one can see that in this limiting case the ground state of each Co(II) ion proves to
be t52ð

2T2Þe
2ð3A2Þ,

4T1

�� �
, so t� transfer connects (via excited states) the orbitally non-

degenerate subshells e2ð3A2Þ, thus resulting in the isotropic HDVV interaction.
When B=Dq 6¼ 0, the ground state also includes a contribution of the state

t42ð
3T1Þe

3ð2EÞ, 4T1

�� �
possessing the orbitally degenerate e3ð2EÞ-subshell. This results in the

anisotropic contributions to the Hamiltonian. In fact, when B=Dq 6¼ 0 one gets C2 6¼ 0 and
hence the anisotropic terms containing ÔA

EuÔ
B
Eu and ÔA

A1
ÔB

Eu þ ÔA
EuÔ

B
A1

will appear along

Table 15. Correspondence between one-site operators Ô� � ŝk q and spin-1=2 operators.

One-site operators Spin-1=2 operators One-site operators Spin-1=2 operators

ÔA1
ŝ00 �̂00

ÔT1�ŝ00 �ði=3Þð�̂11 � �̂1�1Þ ÔT1�ŝ1	1 �ð5i=12Þ�̂00
ÔT1	ŝ00 �ð1=3Þð�̂11 þ �̂1�1Þ ÔT1	ŝ1	1 ð5=12Þ�̂00
ÔT1� ŝ00 ði

ffiffiffi
2
p
=3Þ�̂10 ÔT1� ŝ10 ð5i=6

ffiffiffi
2
p
Þ�̂00

ÔA1
ŝ10 ð5=3Þ�̂10 ÔT2� ŝ10 �ði=6Þ �̂11 þ �̂1�1ð Þ

ÔA1
ŝ1	1 ð5=3Þ�̂1	1 ÔT2� ŝ1	1 ði=6Þ�̂10

ÔEuŝ10 �ð1=3Þ�̂10 ÔT2
ŝ10 ð1=6Þ �̂11 � �̂1�1ð Þ

ÔEuŝ1	1 ð1=6Þ�̂1	1 ÔT2
ŝ1	1 	ð1=6Þ�̂10
ÔEvŝ1	1 ð1=2

ffiffiffi
3
p
Þ�̂1�1 ÔT2� ŝ1	1 	ði=3

ffiffiffi
2
p
Þ�̂1�1
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with the isotropic one. These anisotropic terms become more pronounced when one passes

from the strong cubic crystal field to the weak one. The t2 � t2 transfer (t� 6¼ 0) also leads

to the appearance of the anisotropic terms in the initial exchange Hamiltonian, and thus

in the pseudo-spin-1/2 Hamiltonian. This anisotropy appears due to the contribution of

the orbitally degenerate t52ð
2T2Þ subshells. In general, the anisotropy of the magnetic

exchange is the result of the interplay of both named contributions, namely, the

configuration mixing produced by the cubic crystal field and the transfer between t2
orbitals.

In the first-order approximation the mixing of the ground states with the excited ones

by the exchange interaction is neglected. For this reason, Ĥ
ð1Þ
eff provides a satisfactory

description of the magnetic properties only when the exchange splitting is much smaller

than the SO one, but even in this case the description is not complete because Ĥ
ð1Þ
eff does not

include the TIP. One can significantly improve the results and extend the frameworks of

their applicability by taking into account the term Ĥ
ð2Þ
eff .

Within this approximation, the anisotropy of g-factor can be described and the TIP

contribution appears. The operator Ĥ
ð2Þ
eff has been already deduced in Section 4.2.3 in the

limit case of the isotropic magnetic exchange (second-order terms in Equations (4.16)–

(4.18)). The expression for Ĥ
ð2Þ
eff that takes into account orbitally dependent exchange

contributions is too cumbersome to be useful in the subsequent analysis.
The above consideration was based on perturbation theory. At the same time, the

concept of the effective pseudo spin-1/2 Hamiltonian is more general and remains

applicable even in the case when the perturbation scheme fails. This is the case when the

exchange interaction is comparable with the SO interaction, but the low-lying levels still

arise from Kramers doublets. An analytical solution in this situation is impossible and the

parameters should be found numerically. This can be done by comparing the eigenvalues

of the pseudo-spin-1/2 Hamiltonian and three low-lying energy levels calculated with the

initial microscopic Hamiltonian.
The parameters calculated in this way are shown in Figure 34 as the functions of B/Dq

and in Figure 35 as the functions of t�=t�. Figure 34a shows that the exchange interaction

associated with t�-transfer is isotropic ðJjj ¼ J?Þ in the strong crystal field limit (B=Dq ¼ 0)

and becomes anisotropic (with Jjj4 J?) when B=Dq 6¼ 0: The same is true for g-factor in
Figure 34b and TIP in Figure 34c. The first-order exchange parameters calculated with the

aid of Equation (6.19) are also shown in Figure 34a. The difference between JjjðJ?Þ and

J
ð1Þ
jj ðJ

ð1Þ
? Þ proves to be significant because the �-type exchange interaction t2�="e ¼ 100 cm�1

is not very small, and hence the exchange mixing of the Kramers doublets with the excited

states cannot be neglected. Along with the exact g-factor, the first-order value g0 is also

shown in Figure 34b. In the case under consideration, g0 coincides with the g-factor

of the individual Co(II) ion. One can see that the exchange interaction dramatically

changes g-factor from the value of about 4 (usual value for the individual Co(II) ion in

isotropic case) to a value that is in the range 2–3, resulting at the same time in a small

anisotropy of g when B=Dq 6¼ 0: The exact TIP parameters � jj and �? in Figure 34c are

shown together with the TIP parameter �0 ¼ ð20=�a�Þða�� geÞ
2 for the pair of non-

interacting Co(II) ions occupying perfect octahedral positions. The exchange interaction
accounts for the big difference between �0 and the exact TIP parameters in Figure 34c.

Figure 35a shows the influence of �-transfer on the parameters Jjj and J? for the

typical values B ¼ 970 cm�1 and Dq ¼ 840 cm�1 [100]. At t� ¼ 0, the effective exchange
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is anisotropic with Jjj4 J?. This anisotropy results from the mixing of two 4T1 states,
as was discussed above. In addition, when t� 6¼ 0, the anisotropy of the opposite sign
appears due to the electron transfer between the degenerate subshells. These two
contributions are in competition, so the increase of t� can lead to the change of the sign
of the anisotropy (Figure 35a). The same kind of behaviour takes place for g-factors
(Figure 35b) and the parameters of the TIP (Figure 35c). Figure 35 also shows a significant
deviation of the exact values of the effective parameters from their approximate values
J
ð1Þ
jj , J

ð1Þ
? , g0 and �0.

It is seen from Figures 34 and 35 that the inequalities Jjj4 J
ð1Þ
jj and J?4 J

ð1Þ
? always

hold. On the contrary, gjj, g?5 g0 and � jj, �?5� 0. For this reason, the first-order
values J

ð1Þ
jj , J

ð1Þ
? can be regarded as the lower limits for the exchange parameters, while the

Figure 34. Influence of the ratio B=Dq on the parameters of the pseudo-spin-1=2
Hamiltonian, t�¼ 0, t2�/"ex¼ 100 cm�1, �¼�180 cm�1, �c¼ 0.75: (a) exchange parameters; (b)
components of g-tensor and (c) the parameters of the TIP.
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values g0 and �0 are the upper limits for the corresponding parameters. In the particular
case of isotropic exchange, these statements simply follow from Equations (4.16)–(4.18)
in which the condition D ¼ D0 ¼ 0 is assumed.

Let us briefly summarise the main results described in this section. It was demonstrated
that the electron transfer of t2–t2 type gives rise to the magnetic anisotropy independently
of the strength of the cubic crystal field. On the contrary, the e–e transfer can produce the
magnetic anisotropy only due to the fact that the ground state of the Co(II) ion represents
a mixture of the cubic terms 4T1ðt

5
2e

2Þ and 4T1ðt
4
2e

3Þ. In the limit of strong cubic field, when
this mixture is negligible, the effect of the e–e transfer is fully isotropic. The outlined results

Figure 35. Combined effect of B=Dq and t�=t� on the parameters of the pseudo-spin-1=2
Hamiltonian, t2�/"ex¼ 100 cm�1, B¼ 970 cm�1, Dq¼ 840 cm�1, �¼�180 cm�1, �c¼ 0.75:
(a) exchange parameters; (b) the components of g-tensor and (c) parameters of the TIP.
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allow to formulate the criteria of applicability of the Lines model. First, the Lines model

proves to be a good approximation if the cubic crystal field is strong enough and the
parameters of t2–t2 transfer are small as compared to those for e–e transfer. Second, the

Lines model can also be applicable for some specific relationships between the t2–t2
transfer and the strength of the cubic crystal field. In this case, the exchange anisotropy

can become small as a result of the interplay of two competing contributions. These

arguments are independent of the overall symmetry of the Co(II) pairs and could probably
explain why the Lines theory is proved to be successful in many cases despite the fact

of ignoring the anisotropic orbital contributions to the exchange.

6.3.3. Cyanide-based single molecule magnets containing orbitally degenerate metal ions

One of the most exciting developments of molecular magnetism in the last two decades
is the discovery of metal clusters exhibiting magnetic bistability of an entirely molecular

origin, compounds that are referred to as SMMs [1,2]. The majority of molecules
exhibiting SMM behaviour incorporate oxide-based bridging ligands, which serve to

mediate the exchange interaction between metal centres. In these systems the orbital

angular momenta of the constituent metal ions are strongly quenched by the low-
symmetry crystal fields, and therefore these systems can be termed spin clusters.

In the last 10 years, metal cyanide compounds have also attracted attention as

promissing candidates for new cluster types for SMMs. A remarkable feature of this type
of SMMs is that they contain the metal ions in a highly symmetric (octahedral or

quasioctahedral) ligand surroundings. This can lead to the existence of unquenched orbital

angular momentum in the ground crystal field terms of these ions. This new group of
SMMs is exemplified by the metal-cyanide clusters [MnIII(CN)6]2[MnII(tmphen)2]3
(tmphen¼ 3, 4, 7, 8-tetramethyl-1,10-phenanthroline) [30], K[(5-Brsalen)2(H2O)2Mn(III)2-
Fe(III)(CN)6] � 2H2O [31] and [(Tp)8(H2O)6Cu(II)6Fe(III)8(CN)24]

4þ [32], in which the

low-spin Mn(III) and Fe(III) ions possess unquenched orbital angular momenta.
These systems are drastically different in several important aspects from the classical

SMMs in which all the constituent metal ions are orbitally non-degenerate. First, in the

presence of the axial crystal field acting on the low-spin Mn(III) and Fe(III) ions, their

first-order orbital angular momenta gives rise to a significant single ion magnetic
anisotropy, which cannot be derived from the conventional second-order ZFS

Hamiltonian, as in the case of spin clusters. The role of the first-order single ion
anisotropy in the formation of the magnetisation reversal barrier in the

[MnIII(CN)6]2[MnII(tmphen)2]3 cluster has been studied in detail in [115,116]. Second, as

was pointed out in [135,136], the orbitally dependent contributions to the magnetic
exchange in combination with the SO coupling are also able to create the magnetisation

reversal barrier. Two comparatively simple model systems are considered in [135,136],
namely the dimeric cluster Mn(III)–CN–Mn(II) shown in Figure 36 and the linear trimeric

cluster Mn(II)–NC–Mn(III)–CN–Mn(II). These systems drew our attention because of the

recently demonstrated ability of cyanide chemistry to obtain molecular linear clusters
with orbitally degenerate ions such as the aformentioned SMMs reported in [31]. Hereafter

we will briefly discuss how the exchange anisotropy can lead to the appearance of the
magnetisation reversal barrier in the Mn(III)–CN–Mn(II) dimer.
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6.3.4. Orbitally dependent superexchange in the Mn(III)–CN–Mn(II) pair

In the Mn(III)–Mn(II) dimer, shown in Figure 36, the Mn(III) ion is in a strong cubic

crystal field induced by six carbon atoms (ground state 3T1ðt
4
2Þ), while the Mn(II) ion is in a

weak cubic crystal field produced by the nitrogen atoms (ground state 6A1ðt
3
2e

2Þ). The

model in [135,136] includes the orbitally dependent superexchange mediated by the
cyanide bridge, the SO coupling and the axial crystal field acting within the 3T1ðt

4
2Þ state

of the Mn(III) ion. Let us assign the indices A and B to the Mn(II) and Mn(III) ions,
respectively. One can see that the B! A electron transfer leads to the CT states with very

high excitation energies, and hence such transfer can be excluded from the consideration.
There are two possibilities for the A! B electron transfer, namely, the transfer from

the single occupied t2 orbitals of the Mn(II) ion to the single occupied t2 orbitals of the
Mn(III) ion through the bonding � and antibonding �
 orbitals of the cyanide ion, and the

transfer from the single occupied e orbitals of Mn(II) to the empty e orbitals of Mn(III)
through the cyanide �-orbitals (the hopping parameters corresponding to the t2! e

transfer are expected to be negligible due to the orthogonality of t2 and e orbitals). At the
same time, recent density functional theory calculations of the exchange parameters

in cyano-bridged species [163] demonstrated that the interaction through the cyanide
�-orbitals was significantly smaller compared to the interaction through the � and �


orbitals (see also [164] and references therein). For this reason, in [135,136] only tA2 ! tB2
transfer processes were taken into account in the exchange model. It is easy to see that the

overlap between �-type t2 orbitals of Mn(II) and Mn(III) through the � and �
 orbitals of
cyanide bridge is strong, and the same overlap takes place between 
 orbitals. So there are

two equivalent hopping parameters t� � ¼ t
 
 � t associated to these overlaps (Figure 37),
and the integral t� � can be omitted. Note that the tA2 ! tB2 transfer cannot affect the e2

subshell of the ion A (3A2ðe
2Þ-state). At the same time, this transfer decreases the spin

of the ion A by 1/2. The analysis of the Tanabe–Sugano diagrams [100] shows that the only

appropriate state for the oxidised t22e
2-configuration of the ion A is the state 5T2ðt

2
2e

2Þ and
the reduced t52 configuration of the ion B gives rise to the only state 2T2ðt

5
2Þ. We thus

arrive at the conclusion that the tA2 ! tB2 transfer results in the only CT state
5T2ðt

2
2e

2ÞA �
2T2ðt

5
2ÞB. It is remarkable that the single-ion CT states are the ‘pure’ states,

i.e. each of these states results only from the electronic configuration.
The orbital schemes for the [Mn(II)]A[Mn(III)]B pair (ground state) and

[Mn(III)]A[Mn(II)]B pair (CT state), and the electron transfer process connecting these

Figure 36. Structure of the Mn(III)–CN–Mn(II) dimer.
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states are shown in Figure 38. It is to be noted that each orbital scheme depicts only one

Slater determinant (microstate) of the many-electron open shell wave-function. For

example, the only determinant � �
 � ��
�� �� involved in the two-determinant wave-function

3T1ðt
4
2Þ, �,ms ¼ 0

�� �
¼ ð1=

ffiffiffi
2
p
Þ ��
� ��
�� ��þ � �
� ��

�� ��� �
of the low-spin Mn(III) ion is shown in

Figure 38. On the contrary, the state 6A2ðt
3
2e

2Þ,ms ¼ 5=2
�� �

¼ �
�u�j j is represented by

the only microstate, so the corresponding orbital scheme in this case shows the full

wave-function of the high-spin Mn(II) ion. The hopping electron does not change its spin

projection and selects the initial and final microstates as exemplified in Figure 38.
Using the general formalism described in Section 5.1, one can find the following

expression for the kinetic exchange Hamiltonian of the pair:

ĤexðA,BÞ ¼ �ð1=2ÞJ �5þ 2ŝAŝBð Þ 2þ 3ðl̂BZÞ
2

h i
, ð6:20Þ

In Equation (6.20), the value

J ¼ �t2=ð15"A!BÞ ð6:21Þ

Figure 38. The kinetic exchange mechanism for the Mn(III)–CN–Mn(II) pair.

Figure 37. Scheme of overlap between t2 orbitals of Mn(III) and Mn(II) ions through � orbitals of
cyanide bridge.
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is the exchange parameter and "A!B is the excitation energy corresponding to the A! B
transfer. This Hamiltonian has essentially non-Heisenberg form and includes both spin
and orbital angular momenta operators (orbitally dependent exchange).

6.3.5. Energy pattern of the Mn(III)–CN–Mn(II) dimer and barrier for the reversal
of magnetisation

The Hamiltonian, Equation (6.20), proves to be isotropic in the spin subspace and axially
symmetric in the orbital subspace, so thatS,MS (total spin of the pair and its projection) and
mB

l are the good quantum numbers. The eigenvalues of Ĥex A,Bð Þ are calculated as follows:

EðS,mB
l ¼ 0Þ ¼ �J �63=4þ S Sþ 1ð Þ½ �,

EðS, jmB
l j ¼ 1Þ ¼ �ð5=2ÞJ �36=4þ SðSþ 1Þ½ �:

ð6:22Þ

The energy pattern of the Mn(III)–CN–Mn(II) pair formed by the magnetic
exchange contains two superimposed groups of the energy levels with mB

l ¼ 0 and
j mB

l j ¼ 1 (Figure 39). The total spin S of the pair assumes the values S¼ 3/2, 5/2, 7/2, and
the energy levels within each group obey the Lande rule. The exchange splitting of
both mB

l ¼ 0 and j mB
l j ¼ 1 multiplet proves to be antiferromagnetic ðSgr ¼ 3=2Þ. The

conclusion about the antiferromagnetic exchange splitting in each group of the energy
levels is in agreement with the underlying ideas of Anderson [84] and Goodenough and
Kanamori [86] about the antiferromagnetic exchange coupling due to the electron hopping
between the half-occupied orbitals.

Note that the Lande rule is not valid for the whole energy pattern, particularly, a non-
monotonic alternation of the levels with S ¼ 3=2 and S ¼ 5=2 takes place. It is remarkable
that the energy levels depend not only on the total spin quantum number S but also on
j mB

l j. This leads to the magnetic anisotropy of the system. In the magnetic field applied
parallel to the C4 axis of the bioctahedron, the orbital contribution to the Zeeman splitting
of the ground level is significant (first-order effect) because the operator ��	 l̂BZHZ

possesses the following non-vanishing matrix elements within the ground level

S ¼ 3=2, MS, mlB ¼ 	1
�

��	 l̂BZHZ

��� ���S ¼ 3=2, MS, mlB ¼ 	1
�
¼ 	 � 	HZ: ð6:23Þ

Figure 39. Energy pattern of the Mn(III)–CN–Mn(II) pair formed by the orbitally dependent
magnetic exchange.
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On the contrary, the orbital contribution to the Zeeman splitting of the ground level in
a perpendicular field is much smaller because it appears as a second-order effect due to the
mixing of the ground level with the second excited level (S ¼ 3=2, mB

l ¼ 0) by the
operator ��	 ðl̂BXHX þ l̂BYHYÞ (van Vleck paramagnetism). Therefore, as distinguished from
the Heisenberg magnetic exchange, the orbitally dependent exchange interaction produces
the strong magnetic anisotropy of the pair of ions.

Now, let us consider along with the exchange coupling in cyano-bridged Mn(II)–
Mn(III) pair also the SO interaction, ���ŝB l̂B, operating within the 3T1 term of the
Mn(III) ion. Figure 40 displays the combined effect of the orbitally dependent exchange
and the SO coupling on the energy pattern of the Mn(III)–CN–Mn(II) pair. One can see
that provided J ¼ 0 (exchange interaction is excluded) the energy pattern of dimer consists
of three levels �2� �j j, � � �j j and � �j j, which correspond to jB ¼ 0, 1 and 2, respectively (jB
is the total angular momentum of the ion B). In the presence of exchange interaction
(J 6¼ 0) the energies of the levels become dependent on MJj j, where MJ ¼ mA

s þmB
s þmB

l

is the projection of the total angular momentum (mA
s and mB

s are the spin projections
of the ions A and B). The energies of three low-lying levels with MJ ¼ 	5=2, MJ ¼ 	3=2
and MJ ¼ 	1=2 monotonically increase with the decrease of MJj j. We thus arrive at the
conclusion that the orbitally-dependent exchange between Mn(III) and Mn(II) ions
in combination with the SO coupling results in the formation of the barrier for the reversal
of magnetisation. The magnitude of this barrier monotonically increases with the increase
of the exchange interaction.

The above consideration deals with the case of perfect octahedral surrounding of the
Mn(III) ion. In this case, the single-ion anisotropy is excluded and only exchange
anisotropy is responsible for the existance of the magnetisation reversal barrier. A more
general situation was also considered in [116], in which both the effect of single-ion

Figure 40. Combined effect of the exchange and the SO coupling on the energy levels of the
Mn(III)–CN–Mn(II) pair.
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anisotropy caused by the axial crystal field and the effect of increasing the number of Mn
ions in linear cyanide-based cluster were analysed. The inclusion of the negative axial
crystal field acting on the Mn(III) ion was shown to result in a significant enhancement of
the barrier height. Finally, it was demonstrated that the height of this barrier significantly
increases when passing from dimer Mn(III)–CN–Mn(II) to trimer Mn(II)–NC–Mn(III)–
CN–Mn(II). These results are relevant to the issue of a more rational design approach for
the synthesis of cyano-based SMMs with higher blocking temperatures.

7. Conclusions and outlook

During several decades magnetochemistry of transition metal clusters was based on the
HDVV model. This model played a decisive role in the discovery of the first exchange
coupled system (dimeric cooper acetate) as well as in further identification and study of the
new polynuclear compounds and magneto-structural correlations. The importance of
anisotropic terms in the exchange Hamiltonian (mainly, single-ion anisotropy) has been
understood at this early stage of magnetochemistry. These anisotropic interactions are
crucially important, for example, for electron paramagnetic resonance (EPR), but,
in general, they are rather small in HDVV systems. At the same time, the interest to the
anisotropic interactions was progressively growing from the beginning of 90th due to
the discovery of the molecular nanomagnets (SMMs and SCMs) and the understanding of
the vitally important role of the magnetic anisotropy in the formation of the barrier for
the reversal of magnetisation. Although many efforts have been made to control the
anisotropy barrier in these systems, this task remains of current interest and requires
new approaches.

One of the promising ways of increasing the magnetic anisotropy in SMMs is to go
beyond HDVV systems and to focus on the magnetic clusters composed of orbitally
degenerate metal ions that have unquenched orbital angular momenta. Although seven
decades ago van Vleck pointed out the restrictions of the HDVV model, the problem of
orbital degeneracy has not been attacked till the 1960s. That time marked a new stage
in the study of the exchange interaction in orbitally degenerate systems that has primarily
been focused on the solid state physics and led to the derivation of the orbitally dependent
Hamiltonian and discovery of orbital ordering in JT crystals [121,123]. At the same time,
one of the main effects produced by the orbitally dependent exchange, namely, strong
magnetic anisotropy, has not been understood to full extent at that time and has not been
explored in molecular magnetism. It should also be mentioned that only particular cases
in the whole problem of degeneracy have been treated (some particular electronic
configurations, high symmetry, etc.) and the exchange Hamiltonian has not been derived
in general form that would take into account all details relevant to molecular magnetism,
e.g. overall symmetry, crystal fields, orbital structure, transfer pathways versus geometry,
etc. Looking back, one can see that the systematic studies of the orbitally degenerate
ions have not been undertaken until recently and the earlier theoretical approaches
had to be improved to serve as a theoretical background for the study of degenerate
systems. From this point of view, the new recently developed approaches discussed in
this review represent a step forward in the theoretical description of this class of systems.

The aim of this article was to demonstrate, in an accessible way, how the orbital
degeneracy affects the exchange interaction and energy pattern of polymetallic molecular
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systems. The main emphasis was put on the conceptual aspects and, from this point of

view, the systems discussed in this review are mainly chosen to illustrate the approaches
and methodology rather than to give a systematic description of the particular kinds of

systems (the last is partly filled up by references). We have given a general
consideration of the effective orbitally dependent Hamiltonian that is expected to

become a powerful tool in molecular magnetism. One can mention at least two reasons
for this optimistic expectation: (1) we have presented an universal procedure that

allows to deduce the Hamiltonian for a given pair of metal ions with given electronic

configurations and overall symmetry of the pair, so that the deduced Hamiltonian is
general and adapted to arbitrary geometry and electronic configurations of the

constituent ions; (2) we have given a simple and rather general receipt that allows to
treat this Hamiltonian. The procedure is based on the ITO approach and can be easily

realised on the basis of the well-designed MAGPACK software [165] that allows to
directly evaluate the thermodynamic characteristics of the named systems and (3) the

proposed approach is microscopic in its nature so that the parameters of the
Hamiltonian are explicitly expressed in terms of the key parameters of the individual

metal ions, like orbital populations, crystal field parameters, etc., and in this way
analyse the physical origin of different kinds of exchange contributions. This kind of

microscopic approach has clear advantages as compared with the alternative

approaches adopted in the molecular magnetism. In fact, although the ab initio
calculations give accurate numerical results, they, in some sense, mask the information

about internal parameters and interactions. Alternatively, the phenomenological
Hamiltonian, solely based on the symmetry arguments, leads to the overparametrisa-

tion due to a large number of unknown semiempirical parameters.
As one could see from the above consideration, the degeneracy represents a

complicated many-side problem. Even taking into account all advantages provided by

the general approach to the problem of the orbitally dependent exchange, one faces a
challenge in the full description of complex degenerate systems. For this reason, sometimes

it could be more suitable to use a simplified model based on the use of isotropic exchange
Hamiltonian (Lines model and its generalisations). In this model, the anisotropy is solely a

result of a combined action of a low-symmetry crystal field and SO interaction. Of course,
the limits of applicability of this approximation can be found only on the basis of the more

general orbitally dependent approach, as was discussed in this review for the particular

case of Co(II) ions. Both the model of the orbitally dependent exchange and isotropic
exchange model can be reduced to different, more particular microscopic and

phenomenological models. Different models reviewed in this article and the interrelations
between them are schematically shown in Figure 41. In the limit of strong SO coupling and

axial crystal fields acting on metal ions, both isotropic exchange model and more
sophisticated consideration, based on the orbitally-dependent exchange Hamiltonian lead

to a pseudo-spin-1/2 Hamiltonian for the interacting Kramers doublet ions (Figure 41).
Of course, both the initial orbitally dependent exchange Hamiltonian and the pseudo-

spin-1/2 Hamiltonian deduced on the microscopic background satisfy all generally

required symmetry properties like invariance under the point group operations and time
reversal. Nevertheless, the microscopic nature of this Hamiltonians assumes definite

interrelation between the involved parameters. On the contrary, in phenomenological
effective Hamiltonians deduced on the base of the symmetry conditions, the parameters
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remain independent from the symmetry point of view. These phenomenological versions of
the approaches are also listed in Figure 41 because they are frequently used in molecular
magnetism and, especially, in EPR and INS studies.

To summarise the contents of the present review article, the following key topics are
to be mentioned:

(1) The orbital magnetic contributions manifest themselves both in the local factors
and in the inter-centre magnetic interaction. First, we have discussed the model
that neglects the influence of the orbital angular momenta on the exchange
interaction (Lines model). It was elucidated how the single-ion anisotropy affects
the parameters of the effective pseudo-spin-1/2 Hamiltonian for the low-lying
Kramers doublets. Special attention was paid on systems based on the clusters of
Co(II) ions, which are in the focus of the many studies in molecular magnetism.

(2) We have considered in detail the orbitally dependent contributions to the exchange
interaction that is probably the most important (at least conceptually) part of this
review. We have presented a rigorous mathematical procedure of the derivation
of the kinetic exchange Hamiltonian for a pair of coordinated orbitally degenerate
transition metal ions. The Hamiltonian is expressed in terms of the orbital matrices
(irreducible tensors of the local point group) and spin operators. The microscopic
background of the theory allowed us to find the interrelations between the
parameters of the Hamiltonian and the internal parameters of the system including
all relevant transfer integrals and fundamental intracenter interactions, like crystal
field and Racah parameters for the constituent metal ions in their ground, oxidised
and reduced configurations. The developed formalism accompanied by the use of
the efficient ITO technique in the spherical group made it possible to describe all
relevant interactions (exchange, low-symmetry crystal fields, SO coupling, etc.)

Figure 41. Models and approaches used for the theoretical descriptions of the orbitally degenerate
systems.
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within the unified computational scheme. It was shown that the orbitally
dependent exchange leads to an anomalously strong magnetic anisotropy that
can be considered as a main manifestation of the unquenched orbital angular
momentum. The language of the angular momenta and ITOs of R3 group proved
to be useful not only in the design of the computational procedure but also in a
qualitative discussion of the magnetic anisotropy.

(3) Several characteristic examples are given with the aim to illustrate how the
described technique can be applied and how the results can be analysed. The
magnetic properties of the binuclear face-shared unit [Ti2Cl9]

3� in Cs3Ti2Cl9 have
been discussed with a special emphasis on the experimentally observed magnetic
anisotropy. A general outlook on the non-trivial symmetry properties of the
exchange Hamiltonian was given. It was shown how the magnetic anisotropy
associated with the orbitally dependent exchange is governed by the different kinds
of the electron transfer processes.

(4) The major electronic factors controlling the magnetic anisotropy in Co(II) pairs
have been discussed. The degree of the exchange anisotropy was shown to depend
on the strength of the cubic crystal field and on the relative efficiency of two kinds
of the electron transfer pathways between unfilled d-shells (e–e and t2–t2)
contributing to the kinetic exchange. In the case of strong SO interaction, the
effective Hamiltonian was projected onto the subspace of low-lying Kramers
doublets and, similarly a pseudo-spin-1/2 Hamiltonian was derived. Unlike the
commonly accepted phenomenological approaches based merely on the symmetry
arguments, the proposed procedure is grounded on the microscopic consideration
and hence allows to establish the interrelation between idem parameters of the
system and the parameters of the pseudo-spin-1/2 Hamiltonian.

(5) In the consideration of the cyanide-bridged Mn(III)–Mn(II) pair, it was
demonstrated that under some conditions the orbitally dependent exchange is
able to produce the energy pattern that can be associated with the barrier for the
reversal of magnetisation. This result seems to be instructive in the controlled
design of new cyano-based SMMs with high-blocking temperatures.

The size of this article did not allow us to discuss several important questions related to
the degeneracy. First, we did not address the problem of JTE that is an essential part of the
theory of the systems exhibiting orbital degeneracy (see books by Englman [166], Bersuker
and Polinger [167] and Bersuker [168]). The JTE in magnetic clusters requires special
consideration that is expected to be a perspective part of the work on the exchange systems
containing degenerate ions. Nevertheless, some decisive conclusions can be made on the
basis of a simple qualitative consideration addressing to the basic concepts of the JTE.
According to the JT theorem, the symmetric atomic configuration leading to the electronic
degeneracy proves to be unstable. In the adiabatic limit of a strong JT coupling, the
distortions of the ligand surroundings can be considered as stable so that the electronic
degeneracy is removed and the ground states of the constituent ions are the orbital singlets
(see a comprehensive discussion in [167,168]). In this case, the magnetic interaction can be
treated again within the HDVV Hamiltonian that is valid if the ground singlet is well
isolated from the excited levels in each stable low symmetry JT configuration. This can
be considered as the effect of the JT reduction of the orbitally dependent exchange
accompanied by the restoration of the HDVV exchange. In more general terms, this can be
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referred to as the reduction of the orbital angular momentum in JT systems (Ham effect)

[166–168].
Strong JT coupling is observed in the family of famous SMMs represented by the

Mn12-acetate [1,2]. This system is composed of a tetrahedral core of oxygen-coordinated
Mn(IV) ions, which are surrounded by a ring of eight Mn(III) ions with oxo and acetate

coordination. The Mn(III) coordination environment is subjected to a strong JT distortion

[169–171] so that the orbital degeneracy is removed. Antiferromagnetic HDVV

interactions between the Mn(IV) and Mn(III) ions lead to an S¼ 10 ground state. The

distortions are correlated within the molecule to give structure with the specific axes of

local anisotropic contributions. As it was demonstrated in [172], the situation of strong
JTE resulting in the static distortion occurs in a ferromagnetically coupled Mn19 aggregate

with a record S¼ 83/2 ground spin state. This shows that the JT-based ‘cooperativity’ at

the molecular level is a quite common (at least for Mn oxides) phenomenon. On the

contrary, in a series of cyano-bridged complexes the orbitally dependent exchange

probably dominates. In the intermediate cases of comparable JT coupling and orbitally
dependent exchange interaction the adiabatic approximation fails, and one faces a

dynamical JT situation that is a challenging problem of molecular magnetism. In general,

the JTE and orbitally dependent exchange in molecular clusters are competitive just like in

solids where JT coupling results in the structural ordering [121–123], whereas the orbitally

dependent exchange results in the orbital ordering. Therefore, the magnetic clusters that

are intermediate between microscopic and bulk systems can serve as models for the study
of the cooperative phenomena and, in particular, of a complicated interplay between

different types of electronic and structural phases in solids. This issue seems to be a

perspective topic for the future in-depth studies in magnetism.
As far as the orbital degeneracy is concerned, one should mention that even in spin-

systems the ground state of the system entire can be orbitally degenerate (or ‘accidentally’

degenerate in terms of spin coupling scheme) [14,15]. These systems prove to be spin
frustrated that results in a series of interesting physical consequences [173–178]. The

problem of frustration in the presence of unquenched orbital angular momenta seems to

be an intriguing question for the further studies in this area.
In the present article we did not discuss the problem of orbitally dependent double

exchange in mixed-valence clusters composed of metal ions whose ground crystal field

terms in one or both oxidation degrees possess unquenched orbital angular momentum.
The theory of the orbitally dependent double exchange was developed in [179,180].

In particular, it was demonstrated that under some conditions the double exchange

interaction can lead to a strong magnetic anisotropy. As an example of such a system, the

fully-delocalised Fe(II)Fe(III) face-shared bioctahedral dimer [L2Fe2(m-OH)3](ClO4)2 �

2CH3OH � 2H2O (L is the terminal tridentate ligand) synthesised and characterised by
Wieghardt’s group [181,182] can be mentioned. A more comprehensive study of the double

exchange in degenerate systems seems to be an actual forthcoming problem of molecular

magnetism.
Among the systems in which orbital effects seem to be important, the compounds

exhibiting the so-called ‘giant negative magnetisation’ are to be mentioned. These are

mainly the Fe(II)Fe(III) compounds with organic cations in which in small magnetic fields
of roughly 100 Oe the magnetisation points along the field direction just below the

ferrimagnetic transition of about 45K but it changes sign below the compensation
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temperature of about 28K (see [183,184] and referances therein). It has been demonstrated

by Fishman and Reboredo [185–187] that the magnetic compensation effect in the

Fe(II)Fe(III) bimetallic oxalates with the honeycomb structure arises due to the presence
of the unquenched orbital angular momentum of the Fe(II) ion in a strongly trigonally

distorted surrounding. In [185–187], the superexchange interaction between Fe(II) and

Fe(III) centres through the oxalate bridge was assumed to be isotropic. The role of the
orbitally dependent exchange contributions in the magnetic compensation effect remains

an open question.
In this article, we did not review rapidly developing field of the ab initio calculations of

the exchange and JT vibronic parameters that represent an inevitable part of the problem.

In this respect, a series of the papers of Atanasov et al. should be specially mentioned. In
[188] (see also references therein and [189–191]), a combined ligand field and density

functional theory (DFT) analysis of the magnetic anisotropy and JTE in oligonuclear

complexes based on the FeIII–CN–MII exchange coupled pairs is performed.
In this review we only focused on the clusters of 3d-ions and did not discuss the systems

that include 4d, 5d and 4f-ions. Besides the difference in the hierarchy of the key

interactions (magnetic exchange, crystal fields and SO coupling) that should be carefully

taken into account, the main ideas underlying the theoretical treatment of such systems are
quite similar to those established for the 3d-systems. Therefore the described approaches

can be (with some modifications) used for the description of such systems as well (see, e.g.

[192–195]).
It was demonstrated that the unquenched orbital angular momentum can be

responsible for the SMM behaviour of magnetic clusters, but the detailed discussion of
SMMs and SCMs composed of orbitally degenerate metal ions remained out of the scope

of this review. It is worth to note in this context that, at present, numerous SMMs

and SCMs containing orbitally degenerate 3d, 4f, 4d and 5d ions have been reported
[30–32,196–205]. The theoretical description of the orbital effects in SMMs and SCMs can

be found in [115,116,135,206–212]. It is notable in this context that the understanding of

the role of the orbitally dependent exchange as a source of strong magnetic anisotropy is

expected to broaden horizons for the controlled search for the new SMMs with higher
blocking temperatures. In fact, in the SMMs reported until now the blocking temperatures

do not exceed a few Kelvin, which are too low for the application of these systems as data-

storage units. Therefore, the design of new SMMs with higher blocking temperatures and
thus with higher magnetisation reversal barriers represent an important goal in the field of

molecular magnetism. The magnetisation reversal barrier for the spin-cluster with the

integer ground state spin S is given by the well-known expression Db ¼ DSj jS
2, where

DS 5 0 is the effective molecular ZFS parameter for the ground S-state. This expression
shows that the barrier can be increased either by the increase of the anisotropy parameter

DSj j or by the increase of S. Particularly, the increase of S seemed to be a promising way

to design the SMMs with high-blocking temperatures. However, as has been recently

demonstrated by Waldmann [213], the parameter DS proves to be proportional to S�2 and
hence the barrier Db does not rise with the increase of S. Probably, for this conceptually

important reason, the numerous attempts to increase S by the synthesis of big spin-clusters

with high values of the ground state spin [72,214,215] did not yet produce better SMMs.
As distinguished from the spin-clusters in which the magnitude of the barrier depends

mainly on the relatively small ZFS of the ground spin-state, the barrier in the systems
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comprising transition metal ions with unquenched orbital angular momenta can be
essentially larger. At the same time, more knowledge is required about the relaxation
processes in degenerate systems that are undoubtedly faster than in spin systems and,
moreover, have specific features due to the involvement of the orbital states directly
coupled to phonons. In any case, the design of new SMMs based on orbitally degenerate
ions seems to be a promising route to reach higher magnetic barrier and to enchance the
blocking temperature.
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H. Büttner, and C. Kearly, Inorg. Chem. 36, 2244 (1997).
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Adv. Mater. 11, 558 (1999).
[184] G. Tang, Y. He, F. Liang, S. Li, and Y. Huang, Physica B 392, 337 (2007).
[185] R. S. Fishman and F. A. Reboredo, Phys. Rev. Lett. 99, 217203 (2007).
[186] R. S. Fishman and F. A. Reboredo, Phys. Rev. B 77, 144421 (2008).

[187] P. Reis, R. S. Fishman, F. A. Reboredo, and J. Moreno, Phys. Rev. B 77, 174433 (2008).
[188] M. Atanasov, P. Comba, and C. A. Daul, Inorg. Chem. 47, 2449 (2008).
[189] M. Atanasov, P. Comba, and C. A. Daul, J. Phys. Chem. A 110, 13332 (2006).

[190] M. Atanasov, C. Busche, P. Comba, F. El Hallak, B. Martin, G. Rajaraman, G. Rajaraman,

J . van Slageren, and H. Wadepohl, Inorg. Chem. 47, 8112 (2008).

[191] M. Atanasov, P. Comba, C. A. Daul, and A. Hauser, J. Phys. Chem. A 111, 9145 (2007).
[192] V. S. Mironov, J. Phys.: Condens. Matter 8, 10551 (1996).
[193] V. S. Mironov, L. F. Chibotaru, and A. Ceulemans, Phys. Rev. B 67, 014424 (2003).

[194] V. S. Mironov, L. F. Chibotaru, and A. Ceulemans, J. Am. Chem. Soc. 125, 9750 (2003).
[195] A. V. Palii, B. S. Tsukerblat, J. M. Clemente-Juan, and E. Coronado, Inorg. Chem. 44, 3984

(2005).
[196] N. Ishikawa, M. Sugita, T. Ishikawa, S. Koshihara, and Y. Kaizu, J. Am. Chem. Soc. 125,

8694 (2003).
[197] N. Ishikawa, M. Sugita, T. Ishikawa, S. Koshihara, and Y. Kaizu, J. Phys. Chem. B 108,

11265 (2004).
[198] N. Ishikawa, M. Sugita, and W. Wernsdorfer, J. Am. Chem. Soc. 127, 3650 (2005).
[199] N. Ishikawa, M. Sugita, and W. Wernsdorfer, Angew. Chem. Int. Ed. 44, 2931 (2005).

[200] M. A. AlDamen, J. M. Clemente-Juan, E. Coronado, C. Martı́-Gastaldo, and A. Gaita-Ariño,

J. Am. Chem. Soc. 130, 8874 (2008).

[201] M. A. AlDamen, S. Cardona, J. M. Clemente-Juan, A. Gaita-Ariño, E. Coronado, F. Luis,

C. Martı́-Gastaldo, and O. Montero, Inorg. Chem. 48, 3467 (2009).

[202] J. Tang, I. Hewitt, N. T. Madhu, G. Chastanet, W. Wernsdorfer, C. E. Anson, C. Benelli,

R. Sessoli, and A. K. Powell, Angew. Chem. Int. Ed. 45, 1729 (2006).

[203] E. J. Schelter, A. V. Prosvirin, W. M. Reiff, and K. R. Dunbar, Angew. Chem. Int. Ed. 43,

4912 (2004).

[204] S. Osa, T. Kido, N. Matsumoto, N. Re, A. Pochaba, and J. Mrozinski, J. Am. Chem. Soc. 126,

420 (2004).

[205] Z.-M. Sun, A. V. Prosvirin, H.-H. Zhao, J.-G. Mao, and K.R. Dunbar, J. Appl. Phys. 97,

10B305 (2005).

[206] J. Luzon, K. Bernot, J. J. Hewitt, C. E. Anson, A. K. Powell, and R. Sessoli, Phys. Rev. Lett.

100, 247205 (2008).

[207] L.F. Chibotaru, L. Ungur, and A. Soncini, Angew. Chem., Int. Ed. 47, 4126 (2008).
[208] A. V. Palii, S. M. Ostrovsky, S. I. Klokishner, B. S. Tsukerblat, E. J. Schelter, A. V. Prosvirin,

and K. R. Dunbar, Inorg. Chim. Acta 360, 3915 (2007).
[209] V. and S. Mironov, Doklady Phys. Chem. 415, 199 (2007).
[210] A. V. Palii, S. M. Ostrovsky, S. I. Klokishner, O. S. Reu, Z.-M. Sun, A. V. Prosvirin,

H.-H. Zhao, J.-G. Mao, and K. R. Dunbar, J. Phys. Chem. A 110, 14003 (2006).
[211] A. V. Palii, O. S. Reu, S. M. Ostrovsky, S. I. Klokishner, B. S. Tsukerblat, Z.-M. Sun,

J.-G. Mao, A. V. Prosvirin, H.-H. Zhao, and K. R. Dunbar, J. Am. Chem. Soc. 130, 14729

(2008).

International Reviews in Physical Chemistry 229

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
3
4
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



[212] S. I. Klokishner, S. M. Ostrovsky, O. S. Reu, A. V. Palii, P. L. W. Tregenna-Piggott,
T. Brock-Nannestad, J. Bendix, and H. Mutka, J. Phys. Chem. C 20, 8573 (2009).

[213] O. Waldmann, Inorg. Chem. 46, 10035 (2007).
[214] D. M. Low, L. F. Jones, A. Bell, E. K. Brechin, T. Mallah, E. Riviére, S. J. Teat, and
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